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Figure 1: Processing pipeline of AutoChemplete, ingesting a bitmap image of a chemical structural formula from an inaccessible
document, using interactive labeling to create various accessible visual, textual-auditory, or tactile representations.

ABSTRACT
Despite their interests, blind and low vision students avoid STEM
subjects. Research attributes this to a lack of accessible material.
Annotating STEM content such as chemical structural formulas
requires expert domain knowledge, is time consuming, and frustrat-
ing. We conduct interviews with blind and low vision chemists and
accessibility professionals to derive requirements for tool support.
On this basis, we develop AutoChemplete, an interactive labeling
tool for chemical structural formulas. It ingests images and uses
machine learning to predict the molecule. With a similarity search
in the solution space, we enable even novices to simply pick from
options. From this we are able to generate accessible representa-
tions. We conduct fifteen think-aloud sessions with participants
of varying domain expertise and find support of different annota-
tion styles simultaneously. Not only does AutoChemplete strike a
balance in skill-support, participants even find it entertaining.

CCS CONCEPTS
• Human-centered computing→ Accessibility systems and
tools; User studies; User interface design.
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1 INTRODUCTION
Science, technology, engineering, and mathematics (STEM) educa-
tion lacks accessibility for blind and low vision (BLV1) students.
Among US students with vision impairments, three-quarters are
“more than a full grade level behind their sighted peers in mathe-
matics” [20]. Although 69% of US BLV students show interest in
STEM during high school, only 8% pursue related college degrees
[50]. A key reason why BLV students do not choose STEM sub-
jects in higher education is a lack of accessible learning material
[24]. In many STEM fields, visual elements like diagrams regularly
convey important information. For example, without structural
formulas visualizing atoms and bonds, studying chemistry seems
nearly impossible [27, 35].

1We follow the World Health Organizations (WHO) definitions of low vision (per-
forming visual tasks at reduced level, with less than 30% vision remaining with the
best possible correction), and blind (vision unavailable or unreliable, with less than 5%
remaining after correction). For details see https://id.who.int/icd/entity/1103667651
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Research, driven in considerable parts by the HCI, web, and ac-
cessibility communities, led to improvements, especially for digital
document access [33]. Tactile displays can showmatrices and chem-
ical formulas in LATEX or as vector graphics [38], while auditory
descriptions are used for math formulas [20]. More recent works
support BLV authors in collaborative editing [13, 31].

However, STEM content is often provided in form of PDFs, for
instance textbooks, assignment sheets, and papers, many of which
do not generally meet accessibility requirements [16]. Even with
comparably mild impairments regarding color vision, about 40% of
figures in publications are rated as inaccessible [4]. 85% of US BLV
students in STEM report to receive important course material later
than their peers, as it needs to be made accessible first [8]. This pro-
cess has repeatedly proven to be costly and time-consuming [38],
as well as, frustrating and error-prone in other labeling contexts
[37]. For tables in HTML documents, automated approaches have
shown promising results as the original data is already in a struc-
tured form and simply needs to be re-processed [55]. However, for
widely used PDF documents, such fully-automated approaches fail,
specifically when presented with those very structural elements in
the form of graphics of importance for STEM education [35, 48].
Where manual approaches struggle to scale and automation fails re-
garding the required exactness, an interactive approach combining
the strengths of humans and computers seems adamant. Hereby,
AI-based extraction often delivers a useful first solution, to further
iterate upon manually. To this end, a well-known feature for text
entry on mobile phone keyboards [44] or web search queries [40]
is autocomplete. In this, the computer offers multiple potential con-
tinuations for a given entry. Such features have already proven
beneficial in scenarios where novices are asked to complete tasks
usually better performed by experts [32].

To address the problem of provisioning accessible annotations of
chemical structural formulas, we introduce AutoChemplete, a novel
interactive labeling tool. Figure 1 offers a high-level overview. We
designed AutoChemplete to take over after extracting an image of a
structural chemical formula from a document. We then automat-
ically extract a first prediction of a so-called SMILES2 [56] string
with an encoder-decoder model. SMILES is a unique linear repre-
sentation of molecules that is both machine- and human-readable.
Based on this, we perform a similarity search on the entirety of
the practically possible solution space (i.e. a database of known
molecules) to obtain an ordered list of potential matches. After
human approval or correction, we can generate alternate repre-
sentations, including visual ones for sighted readers, linearized
descriptions like name, IUPAC3 [19], or SMILES, as well as tactile
output, like vector graphics with embedded Braille.

In short, aside from developing AutoChemplete, we contribute
with requirements for alt text tool support, as well as a user evalu-
ation. Further, we deliver a concept to generalize beyond our use
case. In the following, we first present related work. Then, we
outline the design process for AutoChemplete. We conducted inter-
views with three BLV chemists and four accessibility professionals
to elicit requirements for tool support. On this basis, we present

2The Simplified Molecular-Input Line-Entry System is a line notation for describing
the chemical structure by means of short strings.
3The International Union of Pure and Applied Chemistry defines a set of rules to
assign names to molecules, which represent their structure.

AutoChemplete. Further, we quantitatively evaluated the perfor-
mance our ML model and qualitatively evaluated AutoChemplete in
think-aloud sessions with 15 participants of different backgrounds,
ranging from chemistry professor to students of subjects well out-
side STEM. Finally, we discuss our findings, state their limitations,
as well as avenues for future research, and conclude our paper.

2 RELATEDWORK
In this section, we provide an overview of research on STEM docu-
ment accessibility, automated recognition for chemical formulas, as
well as interactive labeling and autocomplete in different domains.
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Figure 2: Depiction of caffeine from https://pubchem.ncbi.
nlm.nih.gov/compound/2519 and accessible representations

2.1 STEM Document Accessibility
Figure 2a shows a depiction of caffeine from the widely used chem-
ical database PubChem [26], which shares common issues for peo-
ple with color blindness and other vision impairments, like color
contrast and line thickness. Accessibility and HCI research has pro-
duced several ways for BLV chemists to access such depictions. Lin-
ear representations (Figure 2d), like IUPAC names or the simplified
molecular-input line-entry system (SMILES4) are easily compatible
with screen readers or Braille output. Vectorized representations,
either with Latin (Figure 2b) or Braille (Figure 2c) lettering allows
for necessary contrast, coloring, line spacing and thickness, as well
as magnification. Potential non-visual output modalities that keep
the two-dimensional aspect include tactile displays, swell and em-
bossed paper, or semantically enriched vector graphics for digital
exploration [24]. Education of BLV students has been a focus for
makers, evaluating 3D printing and laser cutting to produce acces-
sible learning material ad-hoc [10]. Koone et al. [30] have recently
made biochemistry plots accessible in form of 3D prints. Diagrams,
frequently used to visualize measurement data, have been made

4Traditional SMILES itself is not unique, i.e. multiple strings can represent onemolecule.
Chemists have developed methods to compute so-called canonical SMILES strings
from any SMILES, which are unique. We always refer to canonical SMILES.

https://pubchem.ncbi.nlm.nih.gov/compound/2519
https://pubchem.ncbi.nlm.nih.gov/compound/2519
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accessible by combining sonofication and voice [23]. Maps, another
typical case of 2D information needing to be made accessible [22],
have been successfully converted into tactile formats automatically
[21]. However this requires annotated data. Where such data is
not available, for instance for scene descriptions of video content,
research has successfully relied on human-in-the-loop ML [59].
Gamification helped to recruit volunteers for producing alt texts
[54]. Overall, though, research focusing on the procurement of ac-
cessible content [29, 54, 59] seems to be the exception to the rule,
as scholars’ focus is rather on how BLV users can consume such
content [e.g. 10, 23, 30]. Research on accessible chemistry education
for BLV students by D’Agostino [18] summarizes these needs by
calling for “digital textbooks and [...] education resources that are
compatible with accessibility standards”, as well as providing “tactile
[...] representations” and “alt text descriptive annotations”.

2.2 Automated Recognition of Chemical
Structural Formulas

Automated recognition of structural formulas is also of interest
outside of accessibility concerns. Research driven by chemists, as
well as ML experts has consequently made ample efforts to im-
prove this process. Early on, rule-based approaches were the norm.
Researchers [34, 41, 47, 52] regularly combined simple image pro-
cessing approaches like vectorization with rules along which they
could recognize molecules. Such rule-based approaches are often
highly sensitive to noise, additionally they rarely generalize knowl-
edge by themselves, and must rather be tuned and optimized man-
ually [12]. More modern approaches use deep learning, especially
Transformer-based encoder-decoder models [43, 49, 58]. Most re-
cently [58] report accuracies of 67 − 79%, while [43] report SMILES
generation accuracies of 37−87%. [49] report accuracies of 77−83%.

2.3 Interactive Labeling & Autocomplete
Qian et al. [43] acknowledge the need for manual correction of
ML-predicted SMILES, as their model still is not fully reliable. To
this end, they conduct a study with a single chemistry student.
They show that molecular graphs help experts to more efficiently
annotate SMILES to images. On this basis, they report a 50% de-
crease in annotation time. Interactive labeling approaches in other
contexts have reported similar benefits when combining human
and artificial intelligence [61]. Chemists have developed kekule.js,
an interactive editor for structural formulas. It supports graphi-
cal entry and can output SMILES, without the user knowing this
representation [25]. HCI research has made similar advances for
mathematics, commonly denoted by LATEX math-mode. MathDeck
[17] allows for live rendering in a handwriting-like format, manip-
ulation without knowledge of the linearized format, and search for
similar content. As such it allows for a rudimentary autocomplete
implementation for math formulas. Autocomplete has a long his-
tory in HCI research and is best known from web search [40] or
as predictive text entry on touch keyboards [44]. In the context of
breadboard circuits, autocomplete features have recently shown to
support novices in becoming as effective as their expert peers [32].
Human-AI collaborative approaches, in form of interactive label-
ing, have further shown to improve efficiency and effectiveness of
comparable data entry tasks in various contexts [e.g. 11, 15, 60].

3 DESIGN OF AUTOCHEMPLETE
We designed AutoChemplete5 as part of a larger (unreleased) docu-
ment accessibility platform that takes over tasks like reading order
annotation and identification of content elements. Such general
functionality is also provided by commercial tools like Adobe Ac-
robat Pro6, or free ones like PAVE7, to which AutoChemplete is
complementary. AutoChemplete was designed for real-world usage
at the center for accessibility of our university. One of the main
tasks of the center is to provide accessible literature and learning
materials to all enrolled BLV students. As such, the employees of
the center make teaching material for more than 120 courses per
semester accessible. This number is expected to grow significantly,
increasing the need for tool support (i.e. in form of a dedicated
document accessibility platform) and at least partial automation.

3.1 Interviews
As a starting point for designingAutoChempletewe conducted semi-
structured interviews with two groups. First, we were interested in
the perspectives of BLV chemists. BLV chemists are not users of
AutoChemplete itself. However they are dependent on the product
of AutoChemplete, accessible documents with chemical structural
formulas. Of the five BLV chemists we contacted, we were able
to interview three. The others supplied their vision impairment,
education, job, and currently most used molecule representation
via email. We summarize this in Table 1. Second, we recruited four
employees of the center for accessibility to gain insights into the
annotation process, rather than the final product. This group are
among the target users for AutoChemplete, as it regrettably requires
a sighted person to convert an inaccessible PDF into an accessible
one. We choose accessibility professionals, as they have ample
experience. Participation was voluntary and no compensation was
offered. Of our seven participants one reported her gender as female.
Ages ranged between 21 and 45 years, with an average of 29 (SD=9).

Interviews were conducted via online (video) meetings and took
on average 21 minutes for A1-4 and 63 minutes for C1-3. The inter-
views were recorded and transcribed verbatim. BLV chemists were
queried about their access to literature, preferred representations
for molecules, and challenges around STEM education. Accessibil-
ity professionals were asked to report on the current status quo
and challenges around making literature accessible. To deduct re-
quirements we conducted a thematic analysis following Braun and
Clarke [9]. For efficiency, coding was performed on a one-interview-
one-coder basis. The two coders then jointly performed aggregation
steps. Across the five interviews we obtained a total of 575 in-vivo
codings which we first aggregated into 70 code groups. From these
we identified five actionable requirements, while 11 code groups
remained as a more overarching goal regarding the lack of accessi-
bility and willingness for inclusion in STEM education8.

5We release AutoChemplete as open source as a standalone application: https://github.
com/human-centered-systems-lab/AutoChemplete
6https://www.adobe.com/acrobat/
7https://pave-pdf.org/
8We offer guidelines for both groups and a codebook mapping code groups to require-
ments in the supplemental. We began with in-vivo coding selecting passages as-is,
before merging into code groups and finally requirements (as themes).

https://github.com/human-centered-systems-lab/AutoChemplete
https://github.com/human-centered-systems-lab/AutoChemplete
https://www.adobe.com/acrobat/
https://pave-pdf.org/
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ID vision chem. edu. occup. representation 3𝑟𝑑

C1 blind MSc industry tactile paper ✓
C2 blind HS B.Sc. tactile magnets ✓
C3 low vis. MSc Ph.D. zoom & colors -
- blind PhD industry SMILES (Braille) (✓)
- blind PhD PostDoc tactile display ✓

ID edu. occupation

A1 PhD phy. lead of literature team at a11y center
A2 MSc CS accessibility researcher
A3 BSc CS MSc & document accessibility platform dev.
A4 BSc CS MSc & document accessibility platform dev.
Table 1: Overview of the requirements interviewees: BLV
chemists and accessibility professionals. Note that two BLV
chemists could not participate, but provided information on
their preferred molecule representations. All BLV chemists
also consume e.g. names and IUPAC convention via screen
readers, except for C3, who is able to read with their eyes. 3𝑟𝑑

represents whether their current molecule representation
requires a third party to assist in transferring it into this
format every time the molecule is to be read.

3.2 Requirements
Based on the interviews, we can confirm a severe lack of accessibil-
ity of STEM learning material various prior works have identified
[e.g. 8, 24, 50]. Interviewees report that if there is accessible learning
material it needed other BLV students before them “that championed
accessibility issues in the student representation” (C2). Others state
to be “more or less the first” (C1) BLV chemist at their respective
university. One participant recalled that the representative for peo-
ple with disabilities at a university they applied to asked why “they
just won’t consider doing something else, like studying psychology,
going to law school, or becoming a manual therapist” (C2). Another
participant was suggested to “switch majors from chemistry to any
language, to avoid such [accessibility] problems” (C3).

R1 - Exact Annotations. “In normal text, we have a lot of redun-
dancy, so a typo won’t really affect the understanding” (A3). Many
STEM notations like math formulas or molecular structures are
sensitive to mistakes, as they are “made to be compact” (A3). Here,
“slight mistakes can make a huge difference, and you don’t want BLV
students to have less of a chance of learning just because the annota-
tion is wrong” (A4). The center for accessibility regularly produces
“material for exams”, where they need “100% accuracy, so a human
check has to always be there” (A2), as fully-automated approaches
do not produce exact results [43]. Hence, AutoChemplete should
support as much as possible the exactness of the annotations.

R2 - Reasonably Fast. “Blind chemistry students are in short sup-
ply” (C2), but just one student can (and should) voice the need
to have all materials accessible. This is often seen as unsolicited
“extra work” (C1) by educators. Some universities support literature
supply. Of the interviewed BLV chemists, only one has “enjoyed
such luxury” (C2). Accessibility centers experience fluctuation in
demand, annotating “between five and ten documents per month”

(A2). As each document “takes quite a long while” (A1) to annotate,
and the process is performed twice for exactness, AutoChemplete
should be as fast as possible, while not sacrificing R1, by employing
autocomplete to more quickly find the correct solution.

R3 - Skill Support. At the accessibility center, annotation is often
performed by student assistants. However, availability varies be-
tween subjects. “Especially for chemistry it’s difficult, right now its
easy for physics, computer science, or maths” (A1). “In some cases it’s
very difficult to describe [a graphic] if you don’t understand all of it”,
so “we need some kind of experience in the field” (A2), otherwise “you
might not be able to annotate correctly” (A3). However, as demand
fluctuates (R2), accessibility professionals raise the question of “how
physics or math or any non-chemistry student can support those [BLV
chemistry] students” (A1). BLV chemists without support from paid
assistants regularly have to rely on friends and family. However,
often only people from related subjects “can do this sufficiently well”,
and supporters with other backgrounds are “totally unable to cope”
(C3). AutoChemplete should, thus, support less skilled users, by
offering autocomplete to confirm correctness.

R4 - Output Formats. “Our process is quite complex, because we
have different situations [...] we customize the output for each stu-
dent” (A2). Sometimes “a description is not enough, so we have to
do a tactile graphic” (A2). Table 1 shows how all five BLV chemists
choose a different representation. C1 and C2 intend to switch to a
digital modality, however C2 lamented the lack of content. High-
abstraction formats like sum formulas are an important “foundation
to grasp size and composition of a molecule” (C2). As “one is so much
slower in a PDF [than a sighted person]” (C2), BLV chemists need
different formats for different needs. Sum formulas and names allow
for a quick grasp. If the chemist already knows the structure, they
don’t need further detail. IUPAC offers first structural hints as it is
assembled according to known rules. SMILES offers all details, but
needs training to be read. Vectors allow for magnification, color
correction, and tactile output. A one-size-fits-all “solution is impos-
sible” (C3). Hence, AutoChemplete should support a wide range of
outputs, however, as voiced by A2, without redundant work.

R5 - Tool Integration. “What would be nice is wizard guiding you”
(A1). Professionals see the need to be supported by specialized
“tools for [...] visual elements like charts, diagrams, math equations,
or chemistry” (A1, c.f. R3). Current approaches already do “auto-
segmentation for content blocks, [...] and reading order” (A4). For
certain content blocks, like chemical structural formulas, “one needs
to manually add representations” (A4). Afterwards a “compliant
document” is exported (A3). On this basis, AutoChemplete needs to
integrate into existing processes that take over steps like ingestion,
OCR, segmentation, reading order, and output.

3.3 Molecule Recognition
To train our model, we sampled 2 million images from the Pub-
Chem9 [26] database, 900𝑘 images from DACON10, another 900𝑘
from Bristol-Myers Squibb11 including heavy noise, which may
also occur in the real world, as well as 2 million compounds from

9https://pubchem.ncbi.nlm.nih.gov
10https://dacon.io/competitions/official/235640/overview/description
11https://www.kaggle.com/competitions/bms-molecular-translation/overview

https://pubchem.ncbi.nlm.nih.gov
https://dacon.io/competitions/official/235640/overview/description
https://www.kaggle.com/competitions/bms-molecular-translation/overview
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Figure 3: Architecture of our sub-models. The encoder con-
sists of an EfficientNet B0 or B7, and no, two or six Trans-
former encoder layers (TEL). The decoder is either an LSTM
with attention or a six layered Transformer (TDL).

ChEMBL12 [36], which have a distinct visualization form for bioac-
tive molecules. Over all these data-sets, we use a 80/20 split for
training and validation. The images are, if required, downsampled
to 256×256 pixels in grayscale. As we find vastly different visu-
alization styles between data sources (c.f. Figure 2), we employ a
multi-model ensemble strategy to be able to capture such differ-
ences. In each sub-model, we use one of the established pre-trained
EfficientNet-B0 or B7 [51] models with or without additional trans-
former layers [53] to extract image features and generate a context
vector. LSTM with attention [5] or transformer decoder layers are
then used to generate the SMILES strings. We have trained a total
of five sub-models to construct our ensemble. Figure 3 shows an
overview of this architecture. Hereby we constructed sub-model
1 and 2 as simple, general purpose versions. We expect them to
perform well on clean images, e.g. in uncompressed native PDFs.
For sub-models 3 and 4 we introduce noise into the training data,
as it can be found in scanned PDFs or as the result of compression
artifacts or low-quality images. Finally, we optimize sub-model 5
towards the distinct visualization in ChEMBL. As chemical struc-
tural formulas are visualized in a range of styles, our multi-model
architecture is individually tunable to such cases. For prediction,
we follow a majority/similarity vote of the five sub-models to deter-
mine one SMILES. While each sub-model acts independently during
generation, we automatically validate syntactical correctness before
feeding the strings into the ensemble voting mechanism. RDKit13
performs this syntax check much like a compiler does for code, try-
ing to construct a molecule based on the SMILES string. It detects
syntax errors if, e.g. an atom is assigned more bonds than chemi-
cally possible. We maximize the probability of syntactically valid
SMILES being produced, as if one sub-model fails to do so, we have
others to rely on, as our proposed similarity search requires a valid
string. Such ensemble-based architectures have the additional ad-
vantage of being easier to train and re-train. And as AutoChemplete
is designed as an interactive labeling tool, we can incorporate the
resulting user-annotated images as part of additional training data,
once the system is in productive use. All sub-models have attention
and embedding dimensions of 512, without freezing layers during
training, as EfficientNet is generally pre-trained for natural images
(i.e. photos) as opposed to synthetic structures like our molecular
formulas. Hereby we fine-tune the EfficientNet part of the encoder,
while training the decoder from scratch. As progress of research
on automated recognition of chemical structural formulas is ever

12https://www.ebi.ac.uk/chembl/
13https://www.rdkit.org/

so steady, we designed AutoChemplete to easily incorporate future,
even better performing models.

a b

c

Figure 4: User interface of AutoChemplete, with its core com-
ponents highlighted. Input image from [39].

3.4 User Interface
On the basis of the requirements, we developed AutoChemplete
as an interactive labeling tool, hence a complementary ML with
a human-in-the-loop. Addressing requirement R1 through R3, we
designed an interaction around three synergistic components. Our
ML model (the first component, see 3.3) takes the input image, and
produces an initial suggestion for a SMILES string, as represented in
Figure 4a, addressing R2. Then, AutoChemplete performs a similar-
ity search in the PubChem database14 [26]. This search operates on
established practices and distance measures. Chemistry generally
has agreed upon Tanimoto similarity, based on ECFP6,1024 molec-
ular fingerprints for search purposes [12]. String-based distance
measures are inferior in capturing molecular differences as opposed
to fingerprint-based ones [6]. Further Tanimoto is also established
as the benchmark metric for molecular recognition [12, 57, 58].
Such fingerprints offer a unique, albeit as compared to SMILES not
human-readable, identifier of molecules, so that chemically related
molecules also have close fingerprints. In chemistry, this is helpful
to determine similar reactive properties. As ECFP6,1024 fingerprints
are bit arrays of length 1024, the calculation of the Tanimoto similar-
ity𝑇 of two fingerprints𝐴 and 𝐵 becomes computationally efficient
at 𝑇 (𝐴, 𝐵) = |𝐴∧𝐵 |

|𝐴∨𝐵 | , corresponding to simple bit-wise comparison.
Hence, such similarity values are computed for the molecules in
the database, and the results are ranked in descending order. We
operate under the reasonable assumption, that molecules displayed
in STEM learning material will not be random arrangements of
14https://pubchem.ncbi.nlm.nih.gov

https://www.ebi.ac.uk/chembl/
https://www.rdkit.org/
https://pubchem.ncbi.nlm.nih.gov
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bonds and atoms, but rather ones existing in reality. The PubChem
database is the largest collection of known molecules, and is as
such highly likely to contain the structure in question, or at least
a very similar one. The results are ordered by rank and shown
as suggestions, see Figure 4c. They form the second component.
Initially, we show the top four suggestions to not overload the user
interface, however there are further results available on demand.
For each suggestion we show information like colloquial names and
the IUPAC convention. Further, we present a preview visualization
of each suggestion. By clicking on this preview, the user can open
a side-by-side comparison.If the user finds the correct molecule in
these suggestions, they can click on the accept-button, to directly
confirm the corresponding molecule as the correct one (R2, R3).
Such suggestions further support R1, the annotations’ exactness, as
users can compare their annotations to the suggestions. Figure 4b
shows the third component of AutoChemplete, the editor. Hereby,
with kekule.js[25], we incorporate a well known open source editor
for structural formulas. Relying on an industry standard has the
benefit that if users do have domain expertise, they may already
be familiar with this part of AutoChemplete. Upon invocation the
editor comes pre-loaded with the initial model prediction. The user
can then accept what is displayed in the editor (R2), or first make
manual changes (R1). If the user finds a close, but not correct, mol-
ecule in the suggestions (Figure 4c), they can also open it in the
editor to make further changes (R2, R3). Additionally, after each
manual change, the similarity search is refreshed. This allows for
the autocomplete aspect of AutoChemplete, where users do not have
to reproduce the entire molecule by hand, but can rather rely on
AI to finish their work. As such, AutoChemplete employs global
(as opposed to local) autocomplete as it generally suggests entire
solutions instead of partial ones. Our manual editor further offers
local autocomplete (e.g. filling in hydrogens).

To support R5, AutoChemplete is designed to be used when a
structural formula has been found in a document. It takes, as its
only input, an image of the molecule. To comply with R4, we deliver
all textual representations mentioned in Figure 2c (colloquial name,
IUPAC name, sum formula, SMILES). Such textual representations
can be accessed via screen reader or automatically converted to
Braille, for use on displays or on paper. Additionally we can gener-
ate non-human readable formats like InChI15 and ChemFig16 for
export, as well as a short text containing the number of atoms and
bonds, occurring elements, and the molar mass. Once the correct
SMILES string is known, such formats are easily retrievable from
chemical databases - in our case PubChem, as it is used for the
search anyways. Further we can export newly rendered config-
urable vector graphics for either visual or tactile output. Depending
on user preference, for vector graphics, we can keep Latin letter-
ing (e.g. for visually impaired chemists with remaining vision), or
replace letters with their Braille equivalent for better tactile output.

4 EVALUATION
We evaluate AutoChemplete from two perspectives: first the perfor-
mance of the underlying ML model, second, with a comprehensive
user study, qualitative themes, as well as annotation paths.

15The International Chemical Identifier is a linear notation for chemical substances.
16ChemFig is a LaTeX package for drawing molecules.

4.1 Molecule Recognition Evaluation
Testing against previously unseen test data, we report two impor-
tant metrics. As common in most ML applications, we employ an
exact match accuracy. Hereby, the model-predicted SMILES is cor-
rect, if it exactly corresponds to the unique ground-truth SMILES.
Our model achieves an exact match accuracy of 83.36%. Thereby, it
surpasses existing works [58] at 67 − 79% and [49] at 77 − 83% in
accuracy. It places at the higher end of [43] at 37− 87%, whose accu-
racy is highly dependent on visualization and molecule distribution.
Additionally, we study the overall similarity to the correct result.
Our model reaches an average Tanimoto similarity (computed as
explained beforehand) of 91.71% surpassing [58] at 86.6%.

We further combine our output with the similarity search pro-
vided in AutoChemplete to study how quickly the correct molecule
can be found in the suggestions. Hereby, we perform such a search
based on the prediction and report the rank of the ground truth,
calculated as the number of hits with a Tanimoto similarity greater
or equal to that of the ground truth, plus one.
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Figure 5: Similarity search ranks for molecules the MLmodel
predicted correctly (yellow) and incorrectly (blue).

To confirm whether our similarity search works, we check for
the average similarity search placement of the ground truth within
these 83.36% where the model delivers the correct results with an
exact match. The corresponding molecule has a mean placement
of 1.09, with a median of 1 within the similarity search ranking.
Our distribution shows a worst-case of place 4, meaning that for
83.36% of molecules, AutoChemplete is able to show the correct mol-
ecule including name and IUPAC within those suggestions shown
in the interface. This uncertainty in the placement is explained by
the input images having different information content regarding
stereochemistry and chirality. Some visualizations omit e.g. stereo-
chemical information about the three-dimensionality of molecules.
If then different three-dimensional versions of the molecule exist
(e.g. D- and L-glucose), the search for the representation without
this information returns all. For the remaining 16.64% of molecules,
which the model does not identify correctly, we still find a median
placement of 1. The mean, however, is heavily skewed to 52.88,
by a few outlier molecules where the similarity search can only
find the correct match after a worst-case of 16762 others. However,
for 62.5% of the molecules that were not already identified by the
model, the correct solution remains in the top four suggestions
shown. These results are also visualized in Figure 5, showing a long
tail. In summary, combining the model with a similarity search we
allow for an efficient retrieval of the correct solution. In 93.76% of all
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molecules in our test data set we can find the correct solution in the
top four suggestions shown in the user interface of AutoChemplete.

4.2 User Study
To evaluate AutoChemplete, we conducted a user study. We were
interested in how the system supports differently skilled users (c.f.
Table 2) and whether participants were able to use our tool.

Participants. We recruited a total of 15 participants with chem-
ical expertise varying between a music student and a chemistry
professor, and accessibility knowledge of a comparable range. Eight
participants were part-time employed as student assistants for lit-
erature annotation. As there is currently a high need for accessi-
ble learning materials from physics, within those eight there is a
skew of the educational backgrounds towards this subject. How-
ever, such a sample is of interest for our investigation, as physics
students should have a general affinity towards STEM, without
specific knowledge in chemistry. We further recruited five experts
on the topic of chemistry, as well as two students from subjects
outside of STEM. Six participants self-reported as female, the other
nine as male. On average, participants were 26 years old (SD=9).
Table 2 shows an overview of our participants, their educational
background, occupation, and experience with document accessibil-
ity. Participation was voluntary and not compensated.

ID education occupation a11y exp.

E01 PhD chemistry chemistry prof BLV PhD student
E02 PhD chemistry teacher BLV HS see occupation
E03 MEd ph. & ch. HS teacher some, private life
E04 BSc chemistry MSc chemistry -
E05 HS BSc biology -
E06 BSc mech. eng. BSc physics SA
E07 HS BSc physics SA
E08 HS BSc physics SA
E09 HS BSc physics SA
E10 HS BSc physics SA
E11 HS BSc physics SA
E12 HS BSc indust. eng. SA
E13 BSc mechatronics MSc mechatr. SA
E14 BA music MA music -
E15 HS law school -

Table 2: Overview of think-aloud participants. HS = high
school. All have HS chemistry knowledge, E01-E06 have had
college level chemistry or above. E06-E13 are student assis-
tants (SA) at the center for accessibility and are make litera-
ture from of maths, physics, and engineering accessible.

Procedure. Following established guidelines [1], we conducted
a hybrid think-aloud while using AutoChemplete. Such hybrid ses-
sions combine the benefits of concurrent and retrospective ap-
proaches, both capturing users thoughts as they occur, and allowing
for semi-structured interviewing afterwards [1]. Sessions had an
average duration of 55 minutes (SD=11) and were conducted via
a video conferencing, were recorded and transcribed. Participants

shared their screen to observe their interaction with AutoChemplete.
Participants were introduced to the scenario that they are tasked
with making a series of documents accessible, of which the struc-
tural formulas were already extracted and fed into AutoChemplete.
Participants annotated one image after the other for about 20-30
minutes. Participants processed 12.2 images on average. Three par-
ticipants completed only 5 images, whereas two managed to com-
plete all 19 images prepared. After successful completion of the
main task with AutoChemplete, participants were asked to briefly
use a baseline version. In it, the model prediction (Figure 4a,b),
and the autocomplete suggestions as seen in Figure 4c, were re-
moved, leaving just the manual editor and the input image. As such
our baseline version replicates the functionality of professional
molecule-drawing applications like ChemDraw17.

After the usage, the interviewer asked a series of semi-structured
questions following a guideline for designing for motivation, en-
gagement, and thriving in user experience (“METUX”) [42]. It builds
on the self-determination theory [14, 46], which explains human
motivation and well-being based on fundamental psychological
needs and has been frequently applied to HCI research [7].

4.3 Thematic Analysis
We conducted a thematic analysis following Braun and Clarke [9].
In a one-coder-one-interview scheme, we assigned a total of 2194
in-vivo codes to the interviews. The authors first aggregated these
codes into a remaining total of 149 code groups. These groups
were further iteratively refined into 26 higher order groups and
ultimately seven themes that emerged during the analysis 18.

T1 - It Just Works. AutoChemplete enables participants to anno-
tate chemical structural formulas, regardless of expertise. “It is kind
of easy” (E03), for those with chemistry degrees, but even partici-
pants outside of STEM find it “easy to use, there is a learning curve,
[...] and while for the first few it took some time, it just works after
that” (E14). Consequently, users from both ends of the spectrum
“have a good feeling” (E14) and are “quite confident” (E13, E03) in
their results. Further, they find the “speed” at which they progress
“appropriate” (E03) and think that “suggestions contribute to this”
(E08). Even more importantly, participants that already perform
such tasks as their student assistant jobs find the tool to be “helpful”
(E12), and would like a comparable tool for their regular workflow
around LATEX math-mode. Despite, “never having the situation to
annotate a chemical formula before”, E07 thought that the process
“worked well overall”. In comparison to the baseline, which they
“disliked strongly” (E15), users across the board voiced a strong
“preference for the first” (E05), fully featured, version. In summary,
for this first theme, we can report that participants have high satis-
faction with the functionality and usability of AutoChemplete.

T2 - A Common Approach. We find users, independent of their
chemical expertise, to portray the same behavior regarding their
approach to annotation. As our editor closely resembles Chem-
Draw, a commercially available tool “chemists often use” (E03), one
could assume that experts would tend towards using only this. The

17https://perkinelmerinformatics.com/products/research/chemdraw. For a web-based
preview see: https://chemdrawdirect.perkinelmer.cloud/js/sample/
18We offer the guidelines and a codebook in the supplemental.

https://perkinelmerinformatics.com/products/research/chemdraw
https://chemdrawdirect.perkinelmer.cloud/js/sample/
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participant goes on to describe ChemDraw as “a really powerful
tool, maybe sometimes too powerful [...] to just add a figure to a pa-
per”. Our most expert participant E01 states that we have “taken
everything important out [of ChemDraw], everything important or
essential is in this little builder, and everything else is just bells and
whistles”. However, users find suggestions beneficial, and “like that
you can have the side-by-side comparison because it makes it re-
ally easy” (E01). “If you just work with the molecules suggested here
you basically only need to compare images.” (E03). Users notice the
high success rate in finding “the correct molecule very quickly”, like
a “shortcut” (E05) as previously outlined in 4.1. One of our most
novice users, E15, thought aloud as follows: “Well, there seems to
be a sodium - was it? [confused about element symbols N and Na] -
missing, so it can’t be this one. Lets look at the next one. Okay, good,
if its not this one then move on to the next and look at that.” Another
says that “their task was to simply check whether one image looks
like the other” (E06). As E11 puts it, “only if the ones at the bottom
are completely different, [they] would have to do it manually”. On
this basis we find users across the wide spectrum of expertise, from
a chemistry professor (E01) to a law school student who did not
take any chemistry courses in their last two years of high school
(E15), to share a common approach of quick visual comparison.

T3 - Bond-by-Bond. However, we do find a stark contrast be-
tween how different groups perform this comparison. Novices reg-
ularly struggle with spatial orientation, due to rotation, mirrored
molecules, or stereochemistry. As molecules are 3D structures, dis-
played in a 2D notation, there are multiple orientations, that may
not look identical at first sight. “Now it’s mirrored again!”, exclaimed
E14, “Why does virtually every one of those have to be mirrored?”,
summarizing a disdain of many less chemically-apt participants
for spatial orientation tasks. E10 found this “a bit confusing”, and
chose to “rotate the molecule to compare in detail”, as “this makes it
easier”. In turn, experts feel at ease “rotating things in [their] head to
compare” (E01). When the molecule in the editor was oriented in a
different way than that in the input image, E03 recognized quickly
that “its okay the way it is” and later explained that “it’s easy for me
to imagine, because I dealt with stereochemistry in university. I had
to practice this a lot!” E13 voices concern about a more “complicated
molecule”, where one needs to “better check everything”. During
comparison of two molecules, E14 thinks out loud “here needs to be
a connection [bond], okay, now there should be two hydrogen atoms,
and now [...]”. Also E10 notices “a bond left out” or an “atommissing”
from time to time. Their comparably low domain expertise is com-
pensated well. The suggestions allow for convenient side-by-side
view (c.f. T2). They spot slight differences - “this one looks almost
correct, this should be Cl [wrong atom in suggestion], I’ll click on it to
edit” (E12) - and use this as a starting point for their corrections.
“One N, two H, [...]” (E08) shows how novices approach molecular
comparison in a bond-by-bond, and atom-by-atom fashion.

T4 - Names, Groups & Substructures. Expert users, however, com-
pare differently. They “appreciate that one gets all information for a
[suggested] molecule” (E05). This participant describes the expert
mode of operation as: “When I see a trivial name, I can often already
say what molecule this is, what I may need to change. I didn’t even
need the structure, just the name” (E05), hence chemists rarely need

detailed comparisons. In other accounts, they could deduce molec-
ular structures from “the IUPAC convention, and just look at that
to determine if there is a difference” (E05). When it does come to
visually comparing structures, even that is not done in the same
way as the novices (T3). “For the larger molecules, like lipids, I don’t
count each and every atom. One usually aggregates groups. I know the
name of these groups, and this allows me for a lot of space in thinking”,
describes E05. Such liberty to approach the task is reflected by other
expert participants, like E01, “I didn’t seem find myself wanting to
do anything that I couldn’t do”. However, experts do appreciate the
suggestions, “as the quick way to go”, however if the answer does
not “show up in the first few”, experts “just build it” (E01). Experts
simultaneously acknowledge the difficulties, novices face. “If the
system does not recognize it correctly, and well, imagine if you are
not that confident, if you feel like a fish out of water, and really need
to, well [laughs] count double bonds and carbon atoms, [...], it will be
confusing.” (E02). One of our participants who is a teacher adds that
this is the way how students are taught to read molecules even as
early as in high school, “search for the longest chain, or for functional
groups, or ring structures, and then put it together piece by piece [...]
however here, I just need to compare images” (E03). In summary, our
experts compare molecules via trivial or IUPAC names first, then
move on to groups and substructures, and only rarely even see
individual atoms or bonds.

T5 - Chaos in Chemistry. Both experts and novices alike criticize
the lack of coherence in the way the input images look. Participant
E03 remarked that “it’s interesting how bad some are, even with per-
fect eyesight I could have easily confused this [a very short bond] with
a negative charge”, and “this part [double bond in one input image]
looks really strange, almost as if there was a break - good that the
system can deal with such issues”. Beyond such errors in the input
image, there further is a lack of standardization in chemistry, espe-
cially with regards to structural formulas. As E05 summarizes “its
always annotated a little bit differently”. This encompasses “simple
differences like colors, but also the H’s that are missing sometimes”,
says E15, and refers to the fact that often so-called skeletal formu-
las with implicit hydrogen notation are used. As described in T3,
there is also the matter of orientation. Further differences include
abbreviating simple groups like NH2 or “representing them with
bonds” (E10). Charges can be visualized in different ways as well. In
high school, teachers “make this obvious, as not to confuse students.
We put a circle around charge indicators, so it’s clear” (E03), even
though such conventions are not commonly accepted. Concluding,
we find a lack of visualization standards, almost a “chaos” of forms,
that novices need to “get used to at first” (E10).

T6 - Necessary Distance. “From 20 students, 18 want their materials
digitally”, says participant E02, who teaches chemistry at a high
school specialized on BLV students, “however of those 18, everyone
has different needs. Not all use a braille display, some only use a
screen reader, others a combination.”. E02 further describes how
their BLV school relies mostly on colloquial names, and IUPAC
convention for digital output, andworks with “tactile magnet boards,
with different shapes for atoms and bonds”. However, during the
pandemic “lockdown made this all but impossible”, as a sighted
assistant would have to accompany the student in-person to build
structures on this board. “We tried to come up with alternatives, but
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students did not learn much during this time”, said E02, and explained
how digital tactile formats would be beneficial. While the more
expert participants find “SMILES intuitive to read” and “can make
out functional groups in the string”, they agree with the novices that
it is “cool to not need to know SMILES to annotate the images” (E03).
“I haven’t even looked at them once”, adds E05, while E03 says they
“don’t know how a blind chemist would work with the output”. “Since
I annotated visually, I cannot imagine how a blind person does this,”
remarks E05. In the case of physics “since we know it [LATEX], there [...]
is a good connection with the [BLV] students” (E12). For the chemical
formulas they find no such connection. AutoChemplete thus creates
a perceptible distance between BLV students and the annotators.
This distance, however, seems to be necessary, as otherwise novice
and intermediate annotators would be unable to help.

T7 - In-flight Entertainment. Lastly, participants across the spec-
trum of expertise found AutoChemplete to be “entertaining” and
“nice to work with” (E14). Frequently it was compared to “a puz-
zle” (E04) or a “game” (E01, E12) or described as “fun” (E05, E06,
E12). Participants with rather high expertise emphasize how the
tool “struck the right balance where [...] it makes my brain work a
little, but not so much that I am frustrated” (E01), where “it’s not
too difficult, [...] something you can do for a somewhat long time”
(E04). “This labeling is nice to do, like on the side, it’s low cogni-
tive effort, as the suggestions are rather good. Maybe you can even
listen to a podcast or music”, suggests E03. Participant E01 even
states: “I could do this on a long flight, to pass time. A great way
to keep myself distracted! [...] Could probably do a couple hundred
before I get bored”. However, also participants with less expertise
describe it as “putting stuff together, like a game, so satisfying and
[...] casual, it shows you everything you need” (E12). Participant E06
would “specifically choose” chemical literature to annotate in their
student assistant job “on purpose, because its so fun working with
this tool”, particularly compared to the baseline. Thus, we conclude
that AutoChemplete has a certain entertaining character, making
the annotation process that has previously been described as less
than desirable at least somewhat more attractive.

4.4 Annotation Paths
In the think-aloud participants get an exact match in approximately
97% of cases. In Figure 6 we plot which paths users took to anno-
tate. We find that the majority (57%) of molecules were annotated
via accepting a suggestion. For the remaining 43%, the editor was
involved in some capacity. We find 6% of molecules that were ac-
cepted exactly as the model prediction, without changes. In another
16% of cases, the initial model prediction is changed manually until
it is finally accepted. For remaining 21% of molecules, we find users
loading a suggested molecule into the editor. 12% of them are ac-
cepted immediately without further changes. These could have just
been accepted as suggestions, however the user did load them into
the editor (e.g. to rotate them). For the remaining 9 of these 21%,
the user does make changes. Here we see a somewhat larger error
rate in the acceptance from the editor (2% incorrect vs. 41% correct)
as compared to those accepted from suggestions (1% vs. 56%).

Open Suggestion
in Editor (21%)

Correctly Accepted
Editor (41%)

Correctly
Accepted
Suggestion
(56%)

Incorrectly
Accepted
Editor
(2%)

Incorrectly Accepted Suggestion (1%)

Edit Initial Model
Prediction (16%)

AcceptWithout Editing (12%)

Edit (9%)
Accept Editor After
Editing (25%)

Accept Model Prediction without Editing (6%)

Accept Suggestion (57%)

Correct (97%)

Incorrect (3%)

Figure 6: Annotation paths during the think-aloud sessions.

5 DISCUSSION
Overall, we find AutoChemplete to enable participants of every
level of domain knowledge sufficiently well. The obtained levels of
accuracy match current error rates at our center for accessibility
and are generally remedied by its established four-eyes principle for
annotation tasks. In the following, we discuss our results further.

5.1 Skill Balance of Autonomy and Competence
Motivational design research has long postulated trade-offs in skill
support [28, 42, 45]. Foremost, existing research confirms the chal-
lenge to design for the needs of autonomy and competence, as posed
by self-determination theory, in parallel. Hereby, an issue arises
if the same system needs to appeal to both novices and experts
simultaneously. Competence, a need for skill or mastery [14, 46],
needs to be supported by guiding novice users. We elicit this as
requirement R3 and report respective positive evaluation results of
AutoChemplete in themes T1 and T3. However, such competence
supporting design features could also thwart the need for autonomy
of expert users. Autonomy thereby refers to a sense of volition or
control [14, 46] and could be hindered by providing experts with
help they do not need. AutoChemplete strikes a balance in such
skill dependent situations, where both experts report that there
was nothing they “could not do” (E01), but also novices are not
frustrated and find that the tool “helps to make it easy” (E12).

5.2 Curb-cut Effects
Previous research and the interviews with C1-3 provided ample
motivation to increase accessibility in STEM. Further, E04 men-
tioned that while there are trends to start requiring e.g. alt texts
in some journals, there are still “hundreds of papers published each
month, maybe each week” without such accessibility features. They
further refer to “all the old papers out there, going back 100, 150 years,
millions in chemistry alone”. However, sentiment in STEM is not
always positive towards inclusion. Participant C3 described labs
they applied to as a PhD student often voicing the attitude of “you
are welcome here, only if you can keep up with how we are working”.

As making literature accessible is a high-effort task, another
point of our evaluation was to identify curb-cut effects of Au-
toChemplete and the resulting annotated literature, to bring ad-
ditional arguments. Experts pointed out that having “the SMILES
string of every structure in a paper, would be super useful and people
would use that data”, for instance to “copy and paste” molecules
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from a paper into applications “like ChemDraw without having to re-
produce them” (E01). Experts further note that by making literature
accessible, one generally enables them to be “machine searchable”
(E01), something that is already standard practice for “company-
internal databases” (E02) e.g. of the “pharmaceutical industry” (E01).
Such benefits apply to outlets that mandate accessibility annota-
tions for publication, as well as ex-post annotation with tools like
AutoChemplete. Further, participants in the educational sector note
that a tool like AutoChemplete would help them to create “better
learning materials, assignment sheets or exams” (E03). By using Au-
toChemplete in a standalone form, they “can more quickly draw and
export a structure, and also get suggestions for similar molecules to be
used as examples”, which they did “maybe not think of before” (E03).
As theme T7 outlines, there seems to further be an entertaining
character to AutoChemplete. This leads to participant E01 to sug-
gest “making a game out of it”, where one can use images where the
solution is known, to offer it as a learning tool to students, and “mix
in some unknown ones, so the students can help their [BLV] peers”.

5.3 Generalizability
Beyond accessibility of chemical structural formulas, we see the
possibility to generalize our approach to other human-AI interac-
tion formats. Frequently, modern MLmodels [43, 58] approach high
levels of accuracy. However, when exactness is required, they often
cannot be used standalone. AutoChemplete combines such imper-
fect models with autocomplete in form of a solution space search,
to enable humans to better perform their tasks. Such an approach
implements the pattern of interactive labeling in ML and human-
AI interaction guidelines [2, 3]. Potential candidates include the
medical domain, where automating diagnosis and treatment selec-
tion seems far-fetched, however our proposed interaction pattern
could allow for doctors to be suggested several treatment options
to discover. Our approach favors problems, where there is a known,
finite, but too-large to digest manually, solution space. We have
visualized this general approach to such problems in Figure 7.
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Figure 7: Proposed human-AI interaction pattern of imperfect
model + solution space search + human intervention.

5.4 Limitations and Future Work
Our study is limited by its choice of application area, methodology,
and participant demographic. While we outline how our approach
may generalize, other areas may not deliver the preconditions for
it to succeed. Accessibility annotations of plots or diagrams is a
challenge, in which the solution space is not easily searchable.
Following extant HCI research, however, we see transferability to

e.g. mathematical formulas [17]. Future work could integrate such
specialized tools into the document accessibility platform demanded
in R5. Our qualitative findings demonstrate how we enable users
of different backgrounds to work with AutoChemplete, however
follow-up studies could quantitatively compare effects of support
versus no-support in novices and expert groups, much alike [32].

More specifically, participants suggested two changes to the
user interface. Firstly, they asked for the ability to “zoom, pan, and
rotate the [...] image, just as [...] the editor” (E03). Hereby they
referred to the fact that both source and autocomplete suggestion
molecules were fixed in their orientation. With such an option to
align the molecules, it “might be easier [...] to compare these side-
by-side” (E13). Especially those without much chemical aptitude
advocate that image rotation would help themwith issues regarding
spatial imagination. This suggestion not only supports R3, but is
also trivial to implement. Thus we plan to follow it for the document
accessibility platform that AutoChemplete will be part of.

Secondly, participants ask for an even larger emphasis to be
placed on the suggestions: “swap the order of [user interface com-
ponents], as I said, my first gaze went towards the suggestions
immediately after the source image” (E08). Beyond changing the
order of components, a revised version of AutoChemplete could
propose a two-stage process. Our quantitative findings support the
user’s impressions that the correct result can be found in the top
suggestions on most occasions (c.f. Figure 5). In a potential two-
stage process, the user could initially be presented with only the
source image alongside one or two suggestions. Input options for
the user consequently are either accepting one of the suggestions,
or opening either of them as a starting point in the editor and then
being presented with the current interface of AutoChemplete.

6 CONCLUSION
Based on interviews we derived requirements for making chemi-
cal structural formulas accessible. In particular, we find that BLV
chemists need exact, but individualized representations. However,
accessibility professionals have little resources available to support.
Thus they need to work quickly and with as little domain exper-
tise required as possible. Lastly, such a tool needs to integrate into
existing approaches. On this basis, we present AutoChemplete, an
interactive labeling tool for chemical structural formulas, combin-
ing a state-of-the-art, yet imperfect, model, a similarity search in
the solution space and human intervention in form of graphical
annotation. We evaluate with a series of participants of varying
levels of chemistry expertise. Participants think-aloud sessions and
annotation paths reveal an overall similar approach of graphical
comparison, however different styles of molecular analysis. With
these insights we strive to inspire both future research in digital in-
clusion, as well as practical application of tools like AutoChemplete
towards a world where STEM education is accessible for everyone.
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