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Is Context-Aware CNN Ready for the Surroundings?
Panoramic Semantic Segmentation in the Wild

Kailun Yang1, Xinxin Hu2, and Rainer Stiefelhagen1

Abstract—Semantic segmentation, unifying most navigational
perception tasks at the pixel level has catalyzed striking progress
in the field of autonomous transportation. Modern Convolu-
tion Neural Networks (CNNs) are able to perform semantic
segmentation both efficiently and accurately, particularly owing
to their exploitation of wide context information. However,
most segmentation CNNs are benchmarked against pinhole
images with limited Field of View (FoV). Despite the growing
popularity of panoramic cameras to sense the surroundings,
semantic segmenters have not been comprehensively evaluated on
omnidirectional wide-FoV data, which features rich and distinct
contextual information. In this paper, we propose a concurrent
horizontal and vertical attention module to leverage width-wise
and height-wise contextual priors markedly available in the
panoramas. To yield semantic segmenters suitable for wide-
FoV images, we present a multi-source omni-supervised learning
scheme with panoramic domain covered in the training via data
distillation. To facilitate the evaluation of contemporary CNNs
in panoramic imagery, we put forward the Wild PAnoramic
Semantic Segmentation (WildPASS) dataset, comprising images
from all around the globe, as well as adverse and unconstrained
scenes, which further reflects perception challenges of navigation
applications in the real world. A comprehensive variety of
experiments demonstrates that the proposed methods enable our
high-efficiency architecture to attain significant accuracy gains,
outperforming the state of the art in panoramic imagery domains.

Index Terms—Scene Understanding, Semantic Segmentation,
Panoramic Images, Scene Parsing, Autonomous Driving.

I. INTRODUCTION

SEMANTIC segmentation, enabling a unification of navi-
gational perception tasks [1], catalyzes striking progress

in autonomous transportation. Convolutional Neural Networks
(CNNs) achieve superior performance at this task [2]. In
particular, thanks to the capacity to efficiently exploit wide
context information, modern CNNs are able to fulfill semantic
segmentation both swiftly and accurately [3][4].

However, most of current CNNs are designed for narrow
Field of View (FoV) pinhole images in mainstream datasets
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Fig. 1. Top: Challenging panorama examples from our Wild PAnoramic Se-
mantic Segmentation (WildPASS) dataset, including omni-direction roadways,
densely populated areas and nighttime scenes; Bottom: Class distributions of
the WildPASS dataset in terms of the number of pixels in different directions.

like Cityscapes [5] and Mapillary Vistas [6], while a 360◦

semantic segmentation benchmark is rare in the state-of-the-
art. Despite the growing popularity of panoramic cameras
for a complete sensing of the entire surrounding [4], seman-
tic segmenters have not been comprehensively evaluated on
omnidirectional wide-FoV images. Nevertheless, it is highly
uncertain whether a context-aware CNN maintains its per-
formance when taken to unseen panoramic scenes with the
gap between real-world domains, as well as the disparity of
structural information between pinhole images and full-view
panoramas, being evident.

To illustrate this issue, Fig. 1 displays examples of
panoramic images from our WildPASS database, which is put
forward as a new evaluation dataset to kindle the research
on surrounding perception. It can be seen that the panoramas
feature rich and distinct global contextual cues as various
directions of roadways and sidewalks are simultaneously im-
aged. Fig. 1 further depicts the semantic distribution of the
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WildPASS dataset where the road class is centered around both
0◦/360◦ and 180◦ (front-facing) directions, clearly different
to that of pinhole forward-view images [5]. However, the
potential of the context information implicated in panoramic
scenes is not easily materialized without large-scale training
panoramas and explicit distinction of the contextual cues.

Motivated by this observation, this paper proposes a con-
current horizontal and vertical attention module, to jointly
and explicitly, extract width-wise and height-wise contextual
information markedly available in panoramas. The width-wise
contextual information that represents the context along the
horizontal direction, as analyzed above, supposes rich priors in
ultra-wide FoV images. The height-wise context, orthogonally,
encodes structural information in the vertical direction, which
are shared as a common nature of street scenes [7]. With the
concurrent attention embedded into a deep CNN, the feature
maps are recalibrated to be more meaningful along space for
panoramic segmentation, both horizontally and vertically.

To yield semantic segmenters suitable for panoramas, we
argue that it is essential to expose the learner to wide-FoV
omnidirectional inputs before it is ready to be deployed in
the wild. We present a multi-source omni-supervised learning
scheme to cover panoramic imagery domain in the training
of efficient CNNs. Concretely, the omni-supervised learning
concept is approached through data distillation [8], where the
efficient learner CNN exploits both labeled pinhole images
and unlabeled 360◦ full-view panoramas whose wide-angle
and wrap-around connections are considered.

To address the scarcity of panoramic scene parsing testbeds,
we put forward the Wild PAnoramic Semantic Segmenta-
tion (WildPASS) database with pixel-wise annotations using
classes defined in Mapillary Vistas, as a benchmark with
new metrics to facilitate credible numerical evaluation and
comparison of state-of-the-art semantic segmentation CNNs
in panoramic imagery. This dataset embraces the wild by
extracting street-view panoramas from all around the world
(6 continents, 25 cities), which also includes highly uncon-
strained environments and adverse conditions such as the
nighttime (see Fig. 1). WildPASS offers a high variability
of capturing viewpoint, with images taken from both road-
ways and sidewalks, a more comprehensive reflection of the
challenges for real-world autonomous navigation systems to
semantically understand their surroundings.

An extensive set of experiments shows that the concurrent
attention and the omni-supervised training, both help the
efficient context-aware learner to attain significant accuracy
boosts and generalization gains in unseen panoramic domains.
With these two key enablers, our high-efficiency architecture
produces state-of-the-art performances on the public PASS [9]
and the fresh WildPASS datasets. In summary, we deliver the
following contributions:

• We rethink panoramic image semantic segmentation from
the context-aware perspective and propose a concurrent
attention module to exploit height-wise and width-wise
contextual information in panoramas across the 360◦.

• We put forward a multi-source omni-supervised learning
scheme to cover panoramic imagery in training and

unlock the potential of global contextual priors for om-
nidirectional perception.

• We present the diverse WildPASS dataset, which is col-
lected from all around the globe for evaluating panoramic
segmentation in the wild and will be open-sourced at.1

• We largely elevate state-of-the-art single-pass segmenta-
tion performances on both PASS and WildPASS datasets.

II. RELATED WORK

A. From Accurate to Efficient Semantic Segmentation

Semantic segmentation has shown tremendous progress
since Fully Convolutional Networks (FCNs) [2] that illu-
minated the vista of end-to-end pixel-wise prediction. Seg-
Net [10] laid the foundation of the encoder-decoder structure.
Benefiting from deep backbones in classification architectures
like ResNet [11] and DenseNet [12], segmentation CNNs such
as DeepLab [13], PSPNet [14] and DenseASPP [3] greatly
advanced the performance frontiers on a few public datasets.
Pyramid pooling [14], atrous spatial pyramid pooling [3][13]
and multi-scale feature representations [15][16][17] helped to
sense different levels of surrounding context. SPNet [18] em-
ployed strip pooling to aggregate diverse spatial information,
together with pyramid pooling for short-range dependency col-
lection. The boundary-aware feature propagation module [19]
was proposed to harvest local features within their regions
isolated by the learned boundaries.

Recently emerged attention mechanisms [20][21][22] allow
to spotlight informative features and thereby have been applied
in vision tasks. One of the well-known attention operation
introduced in Squeeze-and-Excitation network (SENet) [20],
leveraged global average pooling to squeeze spatial informa-
tion and capture full-view context, followed by an excita-
tion block that re-weights the feature map according to the
importance of different channels. In semantic segmentation,
such attention means facilitated the exploitation of global
statistics (EncNet [23]), cross-modal complementary features
(ACNet [24]) and height-wise structural priors (HANet [7]).
To capture long-range dependencies, non-local blocks [25]
are widely used. DANet [26] took advantage of self-attention
operations [27] to aggregate pair-wise relations between any
two pixels or channels, while OCNet [28] modeled object
context. To reduce the complexity of the pair-wise compu-
tations, CCNet [29] adopted a criss-cross module to refine the
context along horizontal and vertical directions for each pixel.
ORDNet [30] restricted the self-attention into local patches
to emphasize middle-range dependencies. In this work, we
propose an concurrent attention module, which uses height-
wise and width-wise pooling to aggregate spatial information,
while spotlighting the important horizontal and vertical po-
sitions by boosting the informative features. Our concurrent
attention module fundamentally differs from existing context
aggregation methods [18][29] as our attention aims to indicate
which channels are critical at each individual column or row,
instead of only aggregating the spatial dependency or refining
the features based on feature similarity. Thereby, our module
is promising to stabilize wide-FoV semantic segmentation.

1WildPASS: https://github.com/elnino9ykl/WildPASS

https://github.com/elnino9ykl/WildPASS
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The preceding efforts all contribute to the exceedingly high
scores on forward-view pinhole image benchmarks. However,
the divergence of global contextual information between pin-
hole and omnidirectional data leads to the open question
whether context-aware models are qualified in open panoramic
domains. Also, for panoramic images, semantic segmentation
is required to perform with megapixel resolution to cover the
360◦, which intensifies the computation constraint and disqual-
ifies the usage of top-performance sophisticated architectures
in real-time applications. This shifted the research efforts
to design efficient architectures. To list a few representative
networks, ENet [31], SQNet [32], ERFNet [33], ICNet [16],
LinkNet [34], ESPNet [35], EDANet [36], BiSeNet [37],
CGNet [38] and SwiftNet [39]. In previous works, we built
up our solution with ERF-PSPNet [1] and SwaftNet [4] for
autonomous navigation systems. These light-weight networks
have struck a better trade-off between accuracy and inference
latency thanks to the efficient use of context information.
However, most of them were targeted to forward-view clean
images with limited FoV where the complexity is also limited
to measure the reliability and applicability of segmentation
CNNs in the wild.

B. From Surround-View to Panoramic Semantic Segmentation

Early vision-based surrounding perception systems lever-
aged fisheye sensors [40] that were often horizontally arranged
in an array [41][42]. Another cluster of semantic perception
platforms [43][44] resorted to multiple cameras to attain the
full 360◦ coverage. Nevertheless, generating on the fly a
holistic representation incurs significant latency and computa-
tional complexity to process multi-view images, coming with
a sequence of fundamental yet hard works such as camera
calibration, semantic mapping and data fusion [42]. Also, the
size and cost of multiple cameras or blind spots between
different lenses could be problematic in some scenarios [9].

Recently, one of the trendiest approaches is to use a single
panoramic camera [45][46] by running segmentation CNNs
directly on the 360◦ image, which are usually trained on
self-collected data such as the CamVid-360 dataset that was
gathered along the same path of the well-known CamVid
database [46]. With similar purposes, Omni-SYNTHIA [45]
and SYNTHIA-PANO [47] were generated from virtual col-
lections. The purely synthetic OmniScape [48] also belongs
to this group. However, the large discrepancy between syn-
thetic and real-world imagery entails further domain adapta-
tion [49][50] which often needs to adapt the inputs on-the-
fly that sacrifices efficiency during inference, yet struggles to
generalize in open domains. While there are a few wide-angle
databases such as TorontoCity [51] and WoodScape [52], their
scene variety and annotation density are far lower than pinhole
benchmark datasets like Cityscapes [5], Mapillary Vistas [6],
IDD [53] and BDD [54], which suppose rich ontologies for
producing robust segmenters.

Contrary to those approaches trained with limited data of
panoramic scenes, Yang et al. [9][55] presented a Panoramic
Annular Semantic Segmentation (PASS) framework, whose
underlying paradigm is to train on pinhole data and deploy

in unseen panoramas. This unlocks the usage of panoramic
cameras in a comprehensive variety of application scenarios by
taking advantage of the wealth of large-scale datasets. Unlike
previous multi-view systems, they did only need a single
process to fulfill continuous panoramic segmentation. How-
ever, it was achieved by separating the panorama into several
segments, each of which is independently fed to the encoder to
obtain feature maps for the final fusion, significantly increasing
the running time and computation burden [9]. Besides, with the
panorama partitioned into pieces for several forward passes,
they miss the opportunity to leverage the crucial width-wise
context information available in the full-view scene.

Unlike the previous works, we aim to fulfill omnidirectional
semantic segmentation in a single pass and thereby propose
a multi-source omni-supervised learning scheme to cover
panoramic imagery in the training. The omni-supervised con-
cept is approached through data distillation [8], which is dif-
ferent to conventional model distillation methods [56][57] that
ensemble multiple experts but entail re-training different cum-
bersome networks. Instead, we create a light-weight ensemble
of data transformations of panoramic images. Compared to
the pseudo-labeling methods [58][59] in video semantic seg-
mentation and omni-supervised learning in human key point
detection [8] that require massive amounts of extra sequences,
we only use a moderate number of unlabeled panoramas,
while significantly stabilizing omnidirectional scene parsing in
the wild. Specifically, our omni-supervised learning scheme
operates in a multi-source manner to add the diversity of
FoV, intertwining both densely labeled labeled pinhole images
and unlabeled panoramas, where the wide-angle and wrap-
around structures of panoramic images are fully considered.
Finally, the learned efficient CNN can perform both swift
and accurate omnidirectional image segmentation in the wild
without having to manually label any panorama for training.

III. METHODOLOGY

Panoramic images, suppose important contextual priors
depending on a spatial position, due to the wide FoV to
cover horizontal 360◦ surroundings and the common vertical
structures for street scenes. To leverage the rich structural
information, we propose a concurrent horizontal and vertical
attention module to jointly encode width-wise and height-wise
context in a series of steps, which are elaborated in Sec. III-
A. To cover the panoramic imagery domain in the training, a
multi-source omni-supervised learning scheme is presented,
which we describe in detail in Sec. III-B the preparation,
training and deployment stages.

A. Concurrent Horizontal and Vertical Attention

Following recent architectures [7][20][21] that use attention
mechanism to spotlight useful features, we aim to design a
module that allows to indicate important features at individual
columns and rows, and thereby stabilize the segmentation
of wide-FoV street-view images. Specifically, inspired by
the SENet [20] that calibrates feature maps by squeezing
spatially and exciting channel-wise, we propose a concurrent
attention module, which explores alternative dimensions of
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Fig. 2. Architecture of the proposed concurrent horizontal and vertical attention module.

squeeze&excitation for panoramic segmentation. The diagram
of the concurrent horizontal and vertical attention module
is shown in Fig. 2. To explicitly model the width-wise and
height-wise contextual information available in panoramas, the
concurrent attention module comprises two branches, each of
which adaptively recalibrates the feature maps along channel
and the corresponding spatial dimension.

Let X ∈ RC×W×H denote a feature map in semantic
segmentation CNNs, where C is the channel number, W and
H are respectively the width and height of the tensor. Given
the input feature, the concurrent attention module generates
two attention maps A ∈ RC×W and B ∈ RC×H . The attention
maps are generated through a sequence of operations, which
will be introduced in the following paragraphs. The horizon-
tally driven map A ∈ RC×W , encodes width-wise contextual
information that is distinctly rich in the wide-FoV panoramas.
The vertically driven map B ∈ RC×H , orthogonally, encodes
height-wise structural priors commonly available in street
images. After computing the attention maps, the input feature
is transformed through the element-wise multiplication of X
and the attention maps (A and B), resulting in a recalibrated
feature map, formally:

X̃ = X�A+X�B (1)

where � denotes element-wise multiplication, + denotes addi-
tion of the feature maps. Next, we describe in detail the com-
putation of the width-wise attention map for panoramic street
images, while the height-wise attention map, analogously, can
be computed along the orthogonal spatial dimension.

Height-Wise Pooling. With the aim of acquiring a channel-
wise attention map, in the first step we extract width-wise
contextual information from each column by aggregating the
input representation X with size C×W×H into a matrix Y
with the size C×W×1 using a height-wise pooling operator
Gpool (which is implemented by average pooling) to squeeze
along the vertical dimension:

Y = Gpool

(
X
)

(2)

Precisely, the w-th column vector of Y is calculated as:

Y:,w =

[
1

H

H∑
i=1

X1,w,i; ...;
1

H

H∑
i=1

XC,w,i

]
(3)

Interpolation for Coarse Attention. After the height-wise
pooling process, a matrix Y ∈ RC×W is produced. However,
not all the columns may be necessary for yielding an effective
attention map. As illustrated in Fig. 1, class distributions for
each direction clearly differ from each other, even if we divide
the whole 360◦ into 18 angles. Thus, we interpolate the C×W
matrix Y into a matrix Ŷ with the size C×Ŵ :

Ŷ = Gdown

(
Y
)

(4)

Correspondingly, in the downstream interpolation, the resulted
coarse attention map Â is transformed to A to have the same
width as the input feature map via an upsampling process.
Both downsampling and upsampling factors are empirically
set equivalent to 4.

Computation of Attention Map. After the squeezing
process, we recalibrate the height-wise pooled and interpo-
lated feature map Ŷ to provide more importance to rele-
vant horizontal locations and suppress weak ones. Unlike
the squeeze&excitation components that use fully connected
layers to boost the informative features in classification and
pinhole image segmentation tasks [20][21][24], we leverage
convolution layers. This is because for panoramic segmenta-
tion, we consider that the attention process should allow the
relationship between adjacent columns being learned.

Precisely, we adopt three convolution layers to obtain the
attention map before upsampling:

Â = σ

[
G3

conv

(
δ

(
G2

conv

(
δ
(
G1

conv

))))]
(5)

where σ is a sigmoid function and δ is a ReLU activation.
The first convolution layer G1

conv(Ŷ ) = ŷ ∈ RC
r ×Ŵ is used

for channel reduction as in conventional squeeze&excitation
modules which reduces the computation overhead, where r
has been set to 4. The second one G2

conv(ŷ) = ỹ ∈ RC
r ×Ŵ

is applied with sinusoidal positional encoding [27] to the
intermediate feature map ŷ to better encode the contextual
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Fig. 3. Overview of the presented multi-source omni-supervised learning scheme for panoramic semantic segmentation. During training, both labeled images
and unlabeled panoramas are incorporated. Annotations for unlabeled panoramas are automatically produced by seizing an ensemble of a teacher model’s
predictions on multiple transformations with the PASS pipeline [9]. During deployment, the student model is not only efficient and suitable for panoramic
images, but also robust and capable of outputting multiple sets of visual classes, enriching detectable semantics to fully understand unconstrained surroundings.
In the case of two training domains, the efficient CNN is attached with two heads, producing two sets of predictions with C1 and C2 classes, respectively.

information through an element-wise addition (ŷ = ŷ
⊕

PE).
Horizontal positions are randomly jittered for improving the
generalization capacity to different viewpoints. The last con-
volution layer G3

conv(ỹ) = Â ∈ RC×Ŵ is adopted to generate
the attention map. Finally, we have the width-wise attention
map A through the corresponding upsampling:

A = Gup

(
Â
)

(6)

In this way, the recalibration encourages the network to
learn more meaningful feature maps that are relevant both
channel-wise and spatially (horizontally). The attention map
A indicates which channels are critical at each individual
column. In other words, for wide-FoV panoramas, it allows to
robustly predict correct semantic classes at diverse angles with
the correlated channels spotlighted. Similarly, the height-wise
attention map B can be computed along the orthogonal (verti-
cal) dimension, which indicates the important channels at each
individual row. With their addition as depicted in Equ. (1),
our concurrent horizontal and vertical attention module helps
to jointly and explicitly exploit width-wise and height-wise
contextual cues richly present in panoramic images.

B. Multi-Source Omni-Supervised Learning

For a robust semantic perception of the surroundings in a
single pass, it is essential to cover the panoramic domain in
the learning stage, i.e., to expose the segmentation network
during training to panoramic images which suppose wide FoV
and distinct contextual information, both critical to reason
holistically about the surroundings. Thereby, we present a
multi-source omni-supervised learning scheme for efficient
segmentation CNNs, as it is depicted in Fig. 3.

In the preparation phase, we produce annotations for unla-
beled panoramas in an automated way by seizing a sophisti-
cated teacher architecture and ensembling the teacher model’s
predictions, which takes into account the wide-FoV and wrap-
around features of panoramic images. In the training stage, the
efficient CNN is trained on the union of manually annotated
and automatically generated data. In the deployment, the
yielded CNN can run in real time due to the student archi-
tecture’s efficiency, while becoming suitable for panoramic
semantic segmentation with rational context awareness.

Preparation Stage. As it is mentioned above, it is important
to expose the learner to omnidirectional data in the training.
Although large-scale annotated panoramic datasets are not
present, there are a battery of panoramas or panoramic videos
available in the community. In this work, we leverage a source
of unlabeled panoramic images, and automatically create their
labels by seizing the known PASS pipeline [9], as shown
in Fig. 3. We distill knowledge of semantic segmentation
by using a large teacher architecture which may be com-
putationally inefficient that often restricts its application in
real-time systems. However, the teacher model’s generated
semantic maps are high-quality and finely-grained, qualifying
its potential usage for data distillation [8]. We ensemble the
teacher’s predictions on multiple transformed copies of a
panorama to produce the final annotation. Specifically, the
ensemble procedure takes into account the wide-angle and
wrap-around connections of panoramic images.

The teacher model is independently trained on conventional
pinhole data. The teacher model Ft, separated into a feature
model Fte that first predicts high-level abstract features and a
pixel-wise classification model Ftc that maps the features to
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a specific semantic space. When generating the annotations,
the panorama Ip (with a size Hp × Wp) is first partitioned
into N segments, each of which Ii (size: Hp × Wp

N ) is
fed into a feature model. This is critical as there is a key
correspondence between the features inferred from a panorama
segment and the features learned from pinhole images [9], both
corresponding to a similar narrow FoV, formally:

Fte

(
N⊎
i=1

(I
Hp×

Wp
N

i )

)
≡ Fte

(
Nc⊎
j=1

(IH×Wcj )

)
(7)

where Icj denotes a conventional image, and
⊎

denotes the
concatenation of feature maps.

After the concatenation and a max-pooling operation to
recover the feature model size, the classification model Ftc

completes the segmentation to yield a pixel-wise semantic map
P

Hp×Wp
p for the panorama:

PHp×Wp
p = Ftc

[
N⊎
i=1

Fte

(
I
Hp×

Wp
N

i

)]
(8)

This is due to that the classification model with lean convo-
lutional layers, which is also known as the fusion model in
the PASS pipeline, is mainly responsible for the classification
when the semantically-informative feature map has been al-
ready extracted and aggregated. PASS pipeline incurs nearly
N times of computation of a single model, as the capacity
mostly lies in the feature model. Hence, it is suitable to be
used in the preparation rather than the deployment.

Additionally, we seize a specialized ensemble method by
taking into account the omnidirectional trait of our task and the
wrap-around structures of the panoramas. Concretely, this is
realized by rotating the panorama IHp×Wp

p for M times along
the horizontal direction. In this way, each transformed copy

I
Hp×Wp
pk =

⊎N
i=1(I

Hp×
Wp
N

ik
), whose prediction is PHp×Wp

pk ,
has a variation of 360◦/M to the neighboring ones. Then, an
ensemble of the predictions can be created, to have the final
annotation Au for an unlabeled panorama, formally:

Au =

M⊔
k=1

PHp×Wp
pk

=

M⊔
k=1

Ftc

[
N⊎
i=1

Fte

(
I
Hp×

Wp
N

ik

)]
(9)

where
⊔

denotes the ensemble process that can be imple-
mented by aggregating the teacher CNN’s per-pixel proba-
bility maps for the transformed panoramas. An ensemble of
predictions is more reliable in nature compared to the single
one, since averaging the knowledge of multiple passes makes a
model be more prepared against new data. Although this has a
direct negative impact in efficiency since having the output of
M predictions is inevitably more computation-demanding in
running time or memory, these operations (including the PASS
pipeline) are processed off-line in a fully automated way and
only in the preparation, which will not hurt the efficiency in
deployment. Overall, the procedure enables to yield dense and
seamless semantic maps more credible for data distillation.

Training Stage. To yield a segmentation model suitable for
panoramic images, we propose to seize multiple data sources,
as a single training set is limited in the diversity of FoVs,
which is prone to overfitting due to all images being gathered

with the same camera or certain types of acquisition setup [5].
Precisely, we exploit T large-scale datasets for training, each
of which Di (i = 1∼T ) corresponds to a specific domain,
having labeled samples Sil. The annotations for the labeled
samples are Ail, falling in a semantic class space Ci. To train
an efficient student CNN Fs, the conventional strategy is to
learn the mapping depicted in the following equation:

Fs

(
Sil

)
=⇒ Ail(Ci) (10)

The efficient segmentation model Fs, likewise, can be sep-
arated into a student feature model Fse and a classification
model Fsc that maps the predicted features to the specific
semantic space, formally:

Fs

(
Sil

)
= Fsc

[
Fse

(
Sil

)]
=⇒ Ail(Ci) (11)

One of the main aim of our multi-source learning scheme is to
train a single CNN (student model) simultaneously in different
domains, but the semantic spaces in disparate datasets are often
incompatible. For ease of notation, in the case of two domains,
C1 6= C2, which means that the classes are heterogeneous and
class numbers are usually not equivalent, although they are
partially overlapping with each other.

However, in spite of the different class definitions, we
consider that the relationships encoded in the similar label
hierarchies could positively reinforce the generalizability of
feature representations when learning across disparate do-
mains. In this sense, it is fruitful to train with multiple datasets,
which enables the learner to focus more on essential features.
In Fig. 3, the multi-source learning scheme is illustrated in the
two domains case, but it can be easily scaled up to multiple
domains. To address the heterogeneity in the semantic labels,
we append two heads (classification models Fsc1 and Fsc2 )
to the efficient student CNN architecture as it is depicted in
Fig. 3, each of which is a fully convolutional module with
an upsampling layer for prediction in the specific label space.
More precisely, Fsc1 is responsible for classifying C1 classes
with training set 1, while Fsc2 is learning for predicting C2

classes with training set 2. In this way, the training target is
modified into:

Fsc1

[
Fse

(
S1l

)]
, Fsc2

[
Fse

(
S2l

)]
=⇒A1l, A2l (12)

The domain-specific teacher models, in the preparation stage,
have generated two sets of annotations A1u and A2u for the
unlabeled panorama samples Su. Afterwards, the panoramic
data in each label space are blended with the pinhole images
in that domain for training:

Fsci

[
Fse

(
Sil, Su

)]
=⇒

(
Ail, Aiu

)
(Ci) (13)

In this manner, the student model has been exposed to wide-
FoV data in the training. The panoramas will be fed to the
learner in both semantic spaces but not necessarily in the same
forward/backward passes, which helps to yield more general-
ized feature representations irrelevant of imagery domains.
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Equ. (14) denotes the original prediction bias Biassi of the
student trained on only pinhole images with model parameter
θpin when it is tested on a panorama sample xp, whose ground
truth is ypi in a specific label space:

Biassi = E

[
Fsci

[
Fse

(
xp | θpin

)]
− ypi

]
(14)

While being omni-supervised, the model parameter θpin,pan is
learned with both pinhole and panoramic data, where the new
prediction bias Bias′si can be decoupled into the bias of the
prediction to the pseudo label ŷpi, and the difference of the
pseudo label to the ground truth, as it is shown in Equ. (15).
Here, the pseudo label corresponds to the automatically gen-
erated labels in the preparation stage.

Bias′si = E

[
Fsci

[
Fse

(
xp | θpin,pan

)]
− ypi

]

= E

[
Fsci

[
Fse

(
xp | θpin,pan

)]
− ŷpi

]

+ E

[
ŷpi − ypi

]

�Biassi + E

[
ŷpi − ypi

]
(15)

As the student has been exposed to pseudo labels in the
training stage, the first term has already been optimized, and
thereby it is far smaller than the original bias, as it is depicted
in Equ. (15). For the second term, it precisely corresponds
to the bias of the teacher with the PASS pipeline [9] which
leverages the feature correspondence in a panorama segment
semantic segmentation manner as introduced in the preparation
stage (see Equ. (7)). Thereby, the second term is also far
smaller than the original bias of the student model:

E

[
ŷpi − ypi

]
≡BiasPASSti�Biassi (16)

Thereby, it can be estimated that the prediction bias of the
omni-supervised student is far smaller than the model trained
with only pinhole images:

Bias′si�Biassi (17)

In other words, the reliability of the efficient CNN has been
significantly improved in panoramic imagery.

Deployment Stage. After training, the student CNN is
ready to be taken to open panoramic imagery, while neither
ensembling, fusing nor post-processing is required during
deployment. The resulted single model, maintaining the ef-
ficiency and simplicity as in the common case of a directly
supervised end-to-end semantic segmentation approach, also
possesses several important benefits. First, as the learner has
been exposed to wide-FoV omndirectional and multi-source
heterogeneous data, its generalizability has been significantly
enhanced in target panoramic domains. Second, it allows
the context-aware CNN to leverage the readily accessible
contextual information in the full-view 360◦ image as no

separation is incurred in the deployment. Last but not least, the
model is able to deliver multiple sets of detectable semantics:

T∨
i=1

Fsci

[
Fse

(
Ipn

)]
=

T∨
i=1

(
Pi(Ci)

)
(18)

where for a new panoramic image Ipn , a union of T predic-
tions of semantic maps will be produced, each of which Pi

corresponds to a semantic space Ci, supposing a very rich
source of processed information for upper-level navigational
applications.

IV. WILDPASS DATASET

A. Dataset

To kindle the research on surrounding sensing and to
facilitate credible numerical evaluation of semantic segmen-
tation CNNs in panoramic imagery, we put forward the Wild
PAnoramic Semantic Segmentation (WildPASS) dataset. As an
evaluation dataset, it should be very diverse to reflect the gen-
eralizability and real-world applicability of vision algorithms.
Unlike mainstream large-scale datasets like Cityscapes [5]
and BDD [54] datasets that focus on scene understanding in
the urban areas as in Europe or North America, WildPASS
embraces the wild by collecting images from all around the
world. Precisely, we gather panoramas in 25 cities from all
continents (Asia, Europe, Africa, Oceania, North and South
America) except for Antarctica.

In Fig. 4, each subfigure gives an annotated panorama
example for each city. This is achieved by using the Google
Street View and extracting 20 panoramas for each city to
form as the full set. We follow the imaging range (360◦×70◦)
of single-shot panoramic annular lens systems installed on
instrumented vehicles and robotic platforms [4], by cropping
70◦ of vertical FoV with the pitch directions from -30◦ to 40◦.
We resize all panoramas to 2048×400 pixels.

Table I provides a comprehensive analysis with the most
related large-scale databases and evaluation-oriented bench-
marks. Our WildPASS possesses several important characteris-
tics among state-of-the-art datasets. It offers a high variability
in capturing viewpoint by including both driving scenes and
sidewalk environments which has implications for various
transportation applications such as automated vehicles and
assisted navigation systems for visually impaired people [1]. In
addition to viewpoint diversity and global distribution, Wild-
PASS incorporates many unstructured environments with high
uncertainties and ambiguities, as well as densely populated
areas such as unconstrained traffic intersections that can be
imaged in a single 360◦. A crucial portion of surroundings in
WildPASS are in adverse weather or illumination conditions
such as the rainy, snowy and nighttime scenes, which paints
a comprehensive picture of real-world challenges for naviga-
tional perception systems, expecting a segmentation model that
is inherently robust and generalizes well to open, previously
unseen domains. Following existing datasets like PASS [9] and
RainyNight [61], we create annotations on the most critical
navigation-related classes for evaluation. All panoramas from
WildPASS are finely labeled by using 6 classes defined in
Mapillary Vistas: Car, Road, Sidewalk, Crosswalk, Curb and
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Fig. 4. Examples of finely annotated panoramas in WildPASS dataset, collected from 25 cities around the world. From left to right, top to bottom: Adelaide,
Beijing, Boston, Budapest, Changsha, Delhi, Hangzhou, Hong Kong, Huddersfield, Johannesburg, Karlsruhe, Kuala Lumpur, London, Los Angeles, Madrid,
Manchester, Mumbai, New York, Paris, Reykjavik, Rio de Janeiro, Shanghai, Sydney, Taipei and Tokyo.

TABLE I
ANALYSIS OF RELATED REAL-WORLD DATASETS INCLUDING LARGE-SCALE DATABASES (CITYSCAPES, MAPILLARY VISTAS, BDD10K, IDD20K,

WOODSCAPE, TORONTOCITY) AND EVALUATION-ORIENTED BENCHMARKS (WILDDASH, DARKZURICH, RAINYNIGHT, ISSAFE, PASS, WILDPASS).

Dataset Viewpoint
Diversity

Global
Distribution

Adverse
Scenes

Unstructured
Scenes 360◦ Number of

Images
Cityscapes [5] 7 7 7 7 7 5000

Mapillary Vistas [6] 3 3 7 7 7 25000
BDD10K [54] 7 7 3 7 7 10000
IDD20K [53] 7 7 7 3 7 20101

WoodScape [52] 7 3 7 7 3 10k
TorontoCity [51] 7 7 7 7 3 520

WildDash [60] 7 3 3 7 7 211
DarkZurich [50] 7 7 3 7 7 151
RainyNight [61] 7 7 3 7 7 226

ISSAFE [62] 7 7 3 3 7 313
PASS [9] 3 7 7 3 3 400

Our WildPASS 3 3 3 3 3 500

Person, which are of paramount importance for street scene
perception. Compared to previous datasets that have few
annotated single-city panoramas [9][51], WildPASS comprises
diverse scenes from over 20 cities and multiple continents,
encouraging a more realistic assessment of panoramic seg-
mentation performance. Overall, WildPASS has more than
111.5 million annotated pixels for 500 panoramas, which
is larger than state-of-the-art evaluation-oriented datasets in-
cluding WildDash [60], DarkZurich [50], RainyNight [61],
ISSAFE [62] and the previous PASS dataset [9].

B. Metrics

To assess whether different context-aware CNNs are ready
to sense the surroundings on WildPASS dataset, we use several
metrics based on the standard Intersection-over-Union (IoU):

IoU =
TP

TP + FP + FN
(19)

where TP , FP and FN are respectively the number of true
positives, false positives and false negatives at the pixel level.
The first metric we apply is IoU, also known as mean IoU
(mIoU), which is the average IoU values for different semantic
classes on WildPASS dataset. The second metric is ÎoU,
which is put forward to measure the highest IoU score across
different FoVs using cropped panoramas from WildPASS
dataset. ÎoU denotes the IoU at the most comfortable angle,
as it has been demonstrated in [9] that the performance of a
semantic segmentation CNN varies for different FoV inputs.

The third metric is pImpact, the impact of 360◦ FoV on the
semantic segmenter, which is calculated as:

pImpact =
ÎoU− IoU

ÎoU
(20)

Thereby, a score of 0.0% means that the semantic segmenter
perfectly maintains the performance when taken to panoramic
imagery, while a value of 50.0% corresponds to a degradation
by half of the best accuracy.

V. EXPERIMENTS

A. Datasets

Target Testing Datasets. We perform experiments to eval-
uate the effectiveness of the proposed concurrent attention
module and the omni-supervised training scheme for se-
mantic segmentation in panoramic imagery as in the pub-
lic PASS [9] (400 images) and the novel WildPASS (500
panoramas) datasets. The PASS dataset was captured by a
wearable panoramic annular camera [55] in Hangzhou, China.
WildPASS, in contrast, was collected from all around the
world. Both of them represent previously unseen, new coming
domains, with 6 annotated classes to assess the applicability
and generalizability of semantic segmentation CNNs.

Multi-Source Training Sets. Our multi-source training is
experimented with two conventional pinhole image datasets:
Mapillary Vistas [6] and IDD20K [53], two of the largest street
scene parsing datasets in the community. Vistas, provides high
diversity with images shot by various cameras across the globe,
and the variability of viewpoints with images taken from both
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TABLE II
CLASS-WISE ACCURACY OF OMNI-SUPERVISED ERF-PSPNET WITH CONCURRENT HORIZONTAL AND VERTICAL ATTENTION ON MAPILLARY VISTAS.

POL, STL, BIL ETC. ARE ABBREVIATIONS OF THE CLASSES. IoU: 63.7%.

Pol StL Bil TrL Car Tru Bic Mot Bus SiF SiB Roa Sid
50.1% 30.3% 42.5% 58.4% 90.6% 66.5% 57.1% 55.2% 74.7% 66.6% 31.4% 90.8% 69.9%
Cur Fen Wal Bui Per MoC BiC Sky Veg Ter Mar Cro IoU

58.1% 56.0% 52.4% 86.5% 72.3% 55.6% 52.1% 98.3% 90.0% 67.3% 53.8% 66.1% 63.7%

TABLE III
CLASS-WISE ACCURACY OF OMNI-SUPERVISED ERF-PSPNET WITH CONCURRENT HORIZONTAL AND VERTICAL ATTENTION ON IDD20K DATASET.

ROA, DRF, SID ETC. ARE ABBREVIATIONS OF THE CLASSES. IoU: 64.6%.

Roa DrF Sid NoF Ped Rid Mot Bic AuR Car Tru Bus VeF
93.3% 62.8% 65.7% 49.2% 66.6% 69.7% 73.9% 41.2% 83.8% 88.1% 81.0% 87.0% 42.7%
Cur Wal Fen GuR Bil TrS TrL Pol ObF Bui Bri Veg Sky

74.5% 55.8% 38.9% 52.0% 60.7% 57.9% 24.2% 48.4% 41.9% 71.7% 64.7% 87.4% 96.7%

Fig. 5. Examples of automatically generated panoramic annotations for the
stitched panoramas using Pittsburgh dataset [63].

perspectives of vehicles and pedestrians. Such variety is criti-
cal for panoramic segmentation because it exposes the learner
to a wide array of street-scene observations other than only
front-facing urban road-driving views. IDD20K, is appealing
due to its imported highly unstructured environments that are
also implicated in real-world unconstrained surroundings.

Vistas is composed of 18000/2000/5000 images for train-
ing/validation/testing. The recently updated IDD20K com-
prises 14027/2036/4038 images in the train/val/test subsets.
Both ground-truth labels in the testing sets are not openly
available, but in this research the PASS and WildPASS datasets
are readily accessible for evaluation. For Vistas, we use 25
classes for training and present their segmentation accuracy
on the validation set in Table II. For IDD20K, we use the
level-3 labels (26 classes), where the per-class accuracy in
IoU is shown in Table III.

Unlabeled Panoramas Set. As far as the unlabeled panora-
mas set for data distillation is concerned, we leverage the
Pittsburgh dataset [63]. For Pittsburgh dataset, each capture is
associated with 24 perspective images with 2 pitch directions

and 12 yaw directions. Each perspective image has a horizontal
FoV of 60◦ with overlapping views with the horizontally
adjacent ones. By using the known stitching method [64],
we stitch the lower pitch images whose perspective matches
our target imagery for autonomous navigation. In total, we
obtain 966 stitched panoramas from the query set. Fig. 5
shows examples of the stitched panoramas and the generated
annotations with our ensemble method. It can be seen that
although the labels are not as perfect as manually annotated,
they are pretty accurate and well defined. The rich and
distinct global contextual information with various directions
of roadways and sidewalks being simultaneously imaged, are
readily available to be learned by efficient context-aware
CNNs through the omni-supervised solution.

B. Training Setups

Teacher Network. We use PSPNet50 [14] as the teacher
architecture, which has an IoU of 67.1% on Vistas and
66.5% on IDD20K. Regarding the ensemble, we use the PASS
pipeline [9] together with multi-scale prediction, horizontal
flipping (mirroring) for PSPNet50 to produce annotations for
the unlabeled panoramas. PASS is used with N=4 segments
following [9], while the panorama has been rotated for M=32
times which achieves saturated performance. We ensemble
the teacher model’s predictions by aggregating the probability
maps for different copies of a panorama to form as the
final label for data distillation. We test the ensemble effects
on PASS dataset which shows that PSPNet50 without any
operation only achieves 41.4% in IoU, while the whole process
improves the accuracy to 71.9%. The PASS pipeline plays a
vital role as it accounts for an IoU boost of 29.2%. Overall,
although the ensemble inevitably increases the time cost with
multiple feed-forward passes, it is automatically conducted
and only used in the data preparation phase, which does not
impair the inference speed of the efficient student CNN to
be deployed. With the huge certainty and continuity benefits,
the automatically generated panoramic annotations are more
credible for data distillation.

Student Network. For the base architecture of the learner
CNN, we experiment with ERF-PSPNet [1] due to its real-time
performance and publicly available weights of the backbone
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Fig. 6. Architecture of ERF-PSPNet with concurrent horizontal and vertical
attention for feature map from encoder and feature maps in pyramid pooling.

pre-trained on ImageNet [65]. As illustrated in Fig. 6, ERF-
PSPNet follows an asymmetric encoder-decoder structure,
where the encoder is inherited from ERFNet [33] to strike an
optimized efficiency-accuracy trade-off, attached by the pyra-
mid pooling module in PSPNet [14] to seize the multi-scale
context-sensing capacity. Finally, we use bilinear upsampling
to map to the input resolution.

In the omni-supervised solution, our proposed concurrent
horizontal and vertical attention module has been inserted
in the pyramidal processing before upsampling, which are
denoted using different colors for different levels in Fig. 6. The
original feature map from the encoder has also been appended
with a concurrent attention before being concatenated with the
features from the pyramid module. Hence, subsequent convo-
lutions have access to both broad spatial pools and attention
driven features. In this way, the network can jointly leverage
the rich width-wise and height-wise contextual information
available in panoramic images.

Both ERF-PSPNet variants are trained under Adam opti-
mization [66] with a Weight Decay of 2×10−4 and an initial
Learning Rate of 5.0×10−4 that decreases exponentially over
200 epochs. Training samples are fed with a batch size of 12
and a resolution of 1024×512. For the multi-source training,
each iteration involves a composition of a forward pass and a
backward pass per dataset using cross-entropy loss functions.
Class balancing strategy is not used in the loss functions.
To focus on studying the effectiveness of multi-source data
distillation, we only use random horizontal flipping for data
augmentation, where other augmentation techniques [9] that
have been proved beneficial for generalization are kept out.
In this way, the omni-supervised trained ERF-PSPNet with
concurrent attention achieves 63.7% and 64.6% of IoU on
Mapillary Vistas and IDD20K, where class-wise accuracies are
shown in Table II and Table III. Under the omni-supervised
setting for panoramic semantic segmentation, we will also
compare our proposal with the independent horizontal atten-
tion and the vertical attention, which is separately employed
with ERF-PSPNet. Additionally, we will compare with object
context estimation and aggregation [28], as well as concurrent
spatial and channel ‘squeeze & excitation’ [21], both similarly
employed in each pyramid scale to gather attention maps for
context-aware semantic segmentation.

C. Comparison on Public PASS dataset

State of the Art. We step further to evaluate the perfor-
mance of semantic segmenters in unseen panoramic imagery
domains. PASS dataset [9] is a public testbed where many ef-
ficient semantic segmentation CNNs have been attempted and
experimented by previous researches [4][9]. These efficient
CNNs include ENet [31], LinkNet [34], ERF-APSPNet [9],
SwaftNet [4], etc., as shown in Table IV. These efficient
networks have been trained with an extensive set of data aug-
mentation and style transfer-based domain adaptation strate-
gies [9], which are known beneficial for improving segmenta-
tion performance in target imagery.

In this research, we argue that in many real-world appli-
cations, no training samples from the target domains will be
accessible. Thereby, the evaluation of our proposals follows the
paradigm of domain generalization, where one trained model
is expected to generalize well in previously unseen scenarios,
which is critical for panoramic semantic segmentation in the
wild as both the knowledge and image style of the target
domains are unforeseeable. In this mode, we also contrast
with computation-intensive SegNet [10], PSPNet [14] based
on ResNet50 [11], DenseASPP [3] based on DenseNet121 [12]
and DANet [26] basd on ResNet50 [11], which are top-
accuracy segmentation CNNs, trained on Mapillary Vistas
without any domain adaptation by using the proposed hyper-
parameters for them in their respective publications.

Baseline. As the annotations of the PASS dataset were
created according to the labels definition of Mapillary Vistas,
in most cases we evaluate with the Vistas-space result. We
could also evaluate by using the IDD20K-space result despite
the discrepancy of the classes which may impair the accuracy.
As shown in Table IV, when independently-trained, Vistas-
based and IDD-supervised ERF-PSPNet achieves 32.2% and
20.1% of IoU, respectively. This is much lower than 39.2%
which was achieved with aggressive data augmentation which
resorts to domain adaptation in the training [9]. Nevertheless,
these results show that context-aware CNNs are not ready for
sensing the surroundings. This is evidenced not only by our
ERF-PSPNet baseline. Even top-accuracy models are rather
inaccurate in the panoramic domain due to the large gap be-
tween pinhole and 360◦ imagery. For example, DenseASPP [3]
has an IoU of 33.3% while DANet [26] only retains 38.9%
when tested against the annular images.

Benefit of Multi-Source Training. Motivated by this
issue, our joint-training method, denoted as ERF-PSPNet
(IDD20K+Vistas) in Table IV, boosts IoU to 41.0%, signif-
icantly higher than independently-yielded scores (20.1% by
IDD20K and 32.2% by Mapillary Vistas). The huge gain is
attained owing to the well generalized feature representation
offered by our multi-source training scheme. Besides, multi-
source training offers a diversity of input FoVs with images
captured by different cameras, which also helps robustify the
segmentation in panoramic imagery. Overall, our multi-source
joint-training already achieves a greater IoU (41.0%) than all
the best efficient networks attempted by previous researches
like ERF-APSPNet (35.5%) and SwaftNet (38.2%).

Benefit of Omni-Supervised Training. Denoted by ERF-
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TABLE IV
PER-CLASS ACCURACY ANALYSIS ON PUBLIC PANORAMIC ANNULAR SEMANTIC SEGMENTATION (PASS) DATASET [9]

Network Car Road Sidewalk Crosswalk Curb Person IoU
SegNet [10] 57.5% 52.6% 17.9% 11.3% 11.6% 3.5% 25.7%

PSPNet (ResNet50) [14] 76.2% 67.9% 34.7% 19.7% 27.3% 22.6% 41.4%
DenseASPP (DenseNet121) [3] 65.8% 62.9% 30.5% 8.7% 23.0% 8.7% 33.3%

DANet (ResNet50) [26] 70.0% 67.8% 35.9% 21.3% 12.6% 25.9% 38.9%

ENet [31] 59.4% 59.6% 27.1% 16.3% 15.4% 8.2% 31.0%
LinkNet [34] 62.6% 64.9% 23.2% 6.6% 18.1% 7.5% 30.5%
SQNet [32] 56.5% 57.2% 19.1% 21.4% 10.4% 3.0% 27.9%
ICNet [16] 49.3% 52.4% 20.0% 16.7% 6.7% 9.3% 25.7%

ESPNet [35] 52.6% 51.4% 21.6% 10.5% 6.5% 5.6% 24.7%
EDANet [36] 61.4% 64.0% 28.1% 6.3% 15.2% 8.1% 30.5%
BiSeNet [37] 61.8% 58.3% 17.3% 12.7% 10.8% 5.3% 27.7%
CGNet [38] 65.2% 56.9% 23.7% 3.8% 11.2% 21.4% 30.4%
ERFNet [33] 70.0% 57.3% 25.4% 22.9% 15.8% 15.3% 34.3%

PSPNet (ResNet18) [14] 64.1% 67.7% 31.2% 15.1% 17.5% 12.8% 34.8%
ERF-PSPNet [1] 71.8% 65.7% 32.9% 29.2% 19.7% 15.8% 39.2%

ERF-APSPNet [9] 72.3% 71.4% 32.6% 5.6% 16.3% 14.5% 35.5%
SwiftNet [39] 67.5% 70.0% 30.0% 21.4% 21.9% 13.7% 37.4%
SwaftNet [4] 76.4% 64.1% 33.8% 9.6% 26.9% 18.5% 38.2%

ERF-PSPNet (Vistas) 68.8% 62.0% 26.6% 3.9% 17.5% 14.1% 32.2%
ERF-PSPNet (IDD20K) 53.4% 51.2% 3.2% 0.0% 2.3% 10.6% 20.1%

ERF-PSPNet (IDD20K+Vistas) 75.5% 70.9% 32.5% 13.0% 20.6% 33.5% 41.0%
ERF-PSPNet (Omni-Supervised) 81.4% 71.9% 39.1% 24.6% 26.4% 44.1% 47.9%

ERF-PSPNet+hA (Omni-Supervised) 82.4% 76.0% 45.9% 20.8% 26.8% 42.6% 49.1%
ERF-PSPNet+vA (Omni-Supervised) 84.0% 74.4% 47.2% 19.8% 30.9% 53.7% 51.7%

ERF-PSPNet+CA (Omni-Supervised) 85.4% 76.5% 49.0% 27.3% 30.3% 51.1% 53.3%
ERF-PSPNet+OC [28] (Omni-Supervised) 85.1% 76.8% 41.2% 11.8% 27.9% 53.9% 49.5%

ERF-PSPNet+scSE [21] (Omni-Supervised) 83.3% 75.4% 46.8% 33.3% 28.2% 51.3% 53.0%

PSPNet (Omni-Supervised) in Table IV, the omni-supervised
solution further dramatically improves IoU from 41.0% to
47.5%. This even outstrips the large computation-expensive
PSPNet (41.4%) by 6.5% and the state-of-the-art DANet
(38.9%) by 8.6%. This increase is due to our omni-supervised
proposal that exposes the learner to omnidirectional data on the
basis of multi-source training, which has been demonstrated
to be very important for panoramic semantic segmentation.

Benefit of the Concurrent Attention. Since the omni-
supervised solution allows the learner to see panoramas in
the training which suppose rich contextual information. We
validate the effectiveness of the proposed concurrent atten-
tion module in the omni-supervised setting. As shown in
Table IV, ERF-PSPNet+CA denotes that with the concur-
rent attention, it drastically improves IoU to 53.3% from
47.5%. In Table IV, we additionally compare with other
attention modules embedded into ERF-PSPNet, including self-
attention based object context estimation and aggregation [28]
(ERF-PSPNet+OC), as well as concurrent spatial and channel
‘squeeze&excitation’ [21] (ERF-PSPNet+scSE). For object
context processing, it computes a fully dense matrix that
measures the similarities of each pixel and each other pixel for
the whole feature map, to exploit the indicated degree that they
fall in the same semantic class. In this way, ERF-PSPNet+OC
models the long-range dependencies. For scSE, it recalibrates
the feature maps in spatial and channel dimensions.

However, both OCNet and scSE paths aggregate contextual
information without explicit use of the width-wise and height-
wise context in panoramic street scenes. Therefore, it turns
out ERF-PSPNet+CA outperforms both ERF-PSPNet+OC and
ERF-PSPNet+scSE, verifying the superiority of our proposal
for panoramic semantic segmentation. Fig. 7 shows segmen-

(a) Raw (b) Panorama (c) Prediction

Fig. 7. Qualitative examples of panoramic semantic segmentation on annular
images from PASS dataset: (a) Raw, (b) Unfolded panoramas, (c) Predictions.

tation examples produced by our approach on the unfolded
annular images from PASS dataset, which demonstrates that
360◦ seamless segmentation is achievable at the qualified
accuracy, without resorting to any panorama separation nor
adaptation in the inference that hurts efficiency.

Ablation of the Concurrent Attention. As shown in Ta-
ble IV, we conduct an ablation study of the proposed concur-
rent attention solution (ERF-PSPNet+CA) by also testing with
the independent horizontal attention (ERF-PSPNet+hA) and
vertical attention (ERF-PSPNet+vA). The horizontal attention
encodes width-wise context while the vertical one models
height-wise structural priors. It can be seen both attention
modules are effective, benefiting the omni-supervised training
by explicitly extracting the rich contextual information in
panoramas. Finally, the concurrent attention module takes the
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TABLE V
PERFORMANCE ANALYSIS ON WILDPASS DATASET.

Network Accuracy on Vistas Performance on WildPASS
IoU IoU ÎoU pImpact

SegNet [10] 51.1% 26.9% (360◦) 65.8% (90◦) 59.1%
PSPNet (ResNet50) [14] 67.1% 47.3% (360◦) 78.7% (100◦) 39.9%

DenseASPP (DenseNet121) [3] 65.8% 35.1% (360◦) 76.0% (100◦) 53.8%
DANet (ResNet50) [26] 62.7% 47.3% (360◦) 75.5% (90◦) 37.4%

CGNet [38] 53.0% 27.4% (360◦) 70.1% (90◦) 60.9%
SwiftNet [39] 60.1% 32.9% (360◦) 73.4% (90◦) 55.2%
SwaftNet [4] 61.8% 36.9% (360◦) 75.3% (100◦) 51.0%

ERF-PSPNet [1] 61.6% 35.8% (360◦) 75.8% (90◦) 52.8%

ERF-PSPNet (Vistas+IDD20K) 63.0% 39.4% (360◦) 75.1% (110◦) 47.5%
ERF-PSPNet (Omni-Supervised) 62.9% 58.5% (360◦) 76.5% (120◦) 23.5%

ERF-PSPNet+hA (Omni-Supervised) 63.0% 59.3% (360◦) 76.3% (110◦) 22.3%
ERF-PSPNet+vA (Omni-Supervised) 63.1% 59.2% (360◦) 76.9% (120◦) 23.0%
ERF-PSPNet+CA (Omni-Supervised) 63.7% 60.1% (360◦) 77.4% (120◦) 22.4%

ERF-PSPNet+OC [28] (Omni-Supervised) 63.2% 56.9% (360◦) 76.7% (110◦) 25.8%
ERF-PSPNet+scSE [21] (Omni-Supervised) 63.6% 58.1% (360◦) 76.2% (110◦) 23.8%

(a) Overall performance analysis and comparison with state-of-the-art accuracy-oriented and efficient networks.

Network Car Road Sidewalk Crosswalk Curb Person IoU
SegNet [10] 58.1% 61.1% 18.2% 4.2% 14.1% 5.9% 26.9%

PSPNet (ResNet50) [14] 81.8% 75.0% 51.8% 23.9% 31.5% 19.9% 47.3%
DenseASPP (DenseNet121) [3] 51.6% 69.2% 38.1% 16.4% 26.3% 8.7% 35.1%

DANet (ResNet50) [26] 81.1% 75.0% 52.9% 30.1% 22.6% 22.1% 47.3%

CGNet [38] 50.2% 60.1% 24.0% 9.9% 15.4% 4.7% 27.4%
SwiftNet [39] 56.5% 64.1% 29.2% 16.2% 22.9% 8.5% 32.9%
SwaftNet [4] 65.2% 68.5% 37.2% 10.7% 26.8% 13.3% 36.9%

ERF-PSPNet [1] 67.9% 70.5% 36.5% 6.4% 24.1% 9.5% 35.8%

ERF-PSPNet (Vistas+IDD20K) 77.3% 73.1% 34.5% 8.4% 21.5% 21.9% 39.4%
ERF-PSPNet (Omni-Supervised) 89.7% 79.3% 60.9% 28.0% 38.1% 54.8% 58.5%

ERF-PSPNet+hA (Omni-Supervised) 88.2% 81.0% 56.7% 31.8% 40.6% 57.7% 59.3%
ERF-PSPNet+vA (Omni-Supervised) 88.5% 80.2% 59.8% 29.2% 39.9% 57.9% 59.2%
ERF-PSPNet+CA (Omni-Supervised) 90.2% 81.1% 59.9% 36.0% 40.7% 52.7% 60.1%

ERF-PSPNet+OC [28] (Omni-Supervised) 90.6% 80.9% 59.0% 16.1% 38.0% 57.0% 56.9%
ERF-PSPNet+scSE [21] (Omni-Supervised) 90.6% 80.1% 59.4% 26.5% 39.7% 52.1% 58.1%

(b) Per-class accuracy analysis on WildPASS dataset.

advantages of both contextual cues in vertical and horizontal
directions, reaching an IoU of 53.3% on PASS dataset, which
is the new state-of-the-art via a single forward pass.

D. Comparison on WildPASS dataset

Accuracy Downgrade of Context-Aware CNNs. We fur-
ther conduct comparison on our new WildPASS dataset with
the new metrics, which has not been addressed by pre-
vious researches. For this reason, we train 4 accurate yet
computationally-expensive networks including SegNet [10],
PSPNet [14], DenseASPP [3] and DANet [26], as well as
4 efficient networks including CGNet [38], SwiftNet [39],
SwaftNet [4] and ERF-PSPNet [1], as shown in Table V. They
are trained on Vistas using their optimized hyper-parameters
provided by the respective publications. However, when taken
to the wild panoramic imagery, the results are disturbing. In
Table V, when determining the ÎoU at the most comfortable
angle of input, we crop different FoVs around the panorama
center with variations of 10◦ for each point and search for
the highest IoU value. It can be seen that in spite of the
good performance of these context-aware networks in pinhole
imagery like the Vistas validation set, and the high accuracy at
the most comfortable FoV, they are very sensitive when tested
against 360◦ panoramas from WildPASS and thus suffer from
large accuracy downgrades.

To illustrate the impact, DenseASPP degrades by 53.8%
as shown in Table V by using the new pImpact metric. For
efficient networks like CGNet that stacks a large number of
its context guided blocks, suffers from a downgrade of more
than 60.0%. This, however, has to be expected, as the use of
context, which improves segmentation accuracy, also increases
the network’s receptive field to attain a global sense of the
contextual information. Yet, 360◦ panoramas feature distinct
contextual cues with all horizontal directions being imaged,
which is not available in narrow FoVs. Thus, a context-
aware CNN with good performance in pinhole data does not
necessarily maintain the accuracy and may be more sensitive
viewing dissimilar global context in omnidirectional images.

Effectiveness of Multi-Source Omni-Supervision. Moti-
vated by this unsettling sensitivity of segmentation networks,
our proposed multi-source omni-supervised solution signif-
icantly reduces the impact. As shown in Table V, multi-
source training denoted by ERF-PSPNet (Vistas+IDD20K)
shifts the most comfortable angle from 90◦ to 110◦. On
this basis, the omni-supervised solution denoted by ERF-
PSPNet (Omni-Supervised) further shifts the most comfortable
FoV to 120◦ and overall decreases pImpact from 52.8% to
23.5%. The omni-supervised solution slightly decreases the
accuracy on Vistas (which is reasonable with only pinhole
data), as IoU on WildPASS drastically improves from 39.4%
to 58.5%. This demonstrates the effectiveness of multi-source
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Fig. 8. Accuracy of road and crosswalk segmentation in different directions.

omni-supervision for reducing the gap between pinhole and
omnidirectional imagery domains, making efficient CNNs like
ERF-PSPNet suitable for ultra wide-FoV inputs.

Fig. 8 further depicts the accuracy at different directions
when the 360◦ is divided into 18 directions. We visualize
the performance in IoU of two classes including road and
crosswalk, which are the most context-critical classes [9].
Panoramas allow to view multiple directions of roads and
crosswalks, which is not available in pinhole images. Thereby,
the baseline (vistas-trained model) performs unsatisfactorily
where the road segmentation accuracy is much lower at side-
view angles (around 90◦ and 270◦) than at forward-view
angles (around 180◦). Our omni-supervised solution largely
improves the performance and yields more uniform accuracy
distribution, as the model has learned to segment wide-FoV
data with roadways occurring in different directions. For
crosswalk, the baseline accuracy is often lower than 10.0%,
as generally only one crosswalk region will be observed in
pinhole data so crosswalks are frequently labeled as general
road markings in panoramic images [9]. In comparison, the
omni-supervised solution alleviates this issue and dramatically
improves the performance in 360◦ imagery thanks to our
multi-source data distillation.

Effectiveness of the Concurrent Attention. When deploy-
ing with other attention mechanisms such as OCNet [28] and
scSE [21] on WildPASS, it can seen that they decrease the
accuracy of omni-supervised ERF-PSPNet. In contrast, our
proposed concurrent attention module improves IoU to 60.1%,
significantly higher than any other efficient networks, even
surpassing those large sophisticated networks like PSPNet
and DANet (both 47.3%). In addition, the ablation study on
WildPASS verifies that both horizontal and vertical attention
are effective, while the concurrent model succeeds to jointly
leverage width-wise and height-wise contextual information
richly available in panoramic images. Overall, our methods
enable the light-weight ERF-PSPNet to clearly stand out in
front of state-of-the-art networks, exceeding by 12.8% and
23.2% the best scores achieved by context-aware accuracy-
oriented and other efficiency-oriented CNNs (see Table V). As
it is shown in Fig. 8, because the concurrent attention allows
to learn which channels are critical at each individual column,

TABLE VI
COMPARISON OF OUR CONCURRENT ATTENTION (CA) WITH POSITIONAL
ENCODING (PE) AGAINST CONTEXT AGGREGATION METHODS AND OUR
MULTI-SOURCE DATA DISTILLATION METHOD AGAINST OTHERS. “OUR

CA WITH PE” AND “OUR MULTI-SOURCE + CA” BOTH CORRESPOND TO
OUR PROPOSAL: MULTI-SOURCE OMNI-SUPERVISED MODEL WITH

CONCURRENT ATTENTION INGRAINED WITH POSITIONAL ENCODING.

Network Car Road Sidew. Crossw. Curb Person IoU
ASPP [13] 88.7% 80.6% 56.4% 18.5% 36.5% 51.4% 55.3%
PPM [14] 89.7% 79.3% 60.9% 28.0% 38.1% 54.8% 58.5%
BFP [19] 89.0% 82.1% 62.1% 18.0% 39.7% 50.3% 56.9%

Strip Pooling [18] 88.7% 81.5% 57.1% 11.3% 39.1% 48.9% 54.4%
Non-local [25] 83.5% 78.4% 52.1% 31.3% 30.0% 46.1% 53.6%
Criss-cross [29] 90.4% 81.6% 61.1% 19.6% 38.5% 54.4% 57.6%

Our CA without PE 90.1% 81.5% 62.3% 26.7% 38.0% 54.6% 58.9%
Our CA with PE 90.2% 81.1% 59.9% 36.0% 40.7% 52.7% 60.1%

Standard (Vistas+ADE) 67.8% 71.7% 41.1% 19.8% 22.2% 20.9% 40.6%
Standard (Vistas+IDD) 77.0% 74.4% 33.8% 21.1% 21.5% 17.7% 40.9%

Single-source 91.0% 79.8% 55.1% 10.3% 43.1% 55.0% 55.7%
Our multi-source 89.7% 79.3% 60.9% 28.0% 38.1% 54.8% 58.5%

Our multi-source + CA 90.2% 81.1% 59.9% 36.0% 40.7% 52.7% 60.1%

it consistently improves segmentation accuracy in almost all
directions.

Comparison with Context Aggregation and Distillation
Methods. Additionally in Table VI, the proposed concurrent
attention is compared against context aggregation methods
including Atrous Spatial Pyramid Pooling (ASPP) [13], Pyra-
mid Pooling Module (PPM) [14], Boundary-aware Feature
Propagation (BFP) [19], Strip Pooling module [18], non-local
module [25] and criss-cross attention [29]. They are both
trained with the backbone of ERFNet [33] in a multi-source
omni-supervised manner. Due to the learned boundaries, BFP
exceeds on the segmentation of roadways and sidewalks,
which require accurate road boundary distinction. Criss-cross
attention performs well on the detection of cars and persons by
leveraging the learned correlations between long-range pixel
positions. Overall, while these blocks deliver decent accuracy
on some classes, our concurrent attention outperforms them
in terms of IoU by clear margins. The results also show that
positional encoding improves the generalization, particularly
for viewpoint-critical objects like crosswalk.

Furthermore, we compare against standard data-source data
distillation methods [8] with ERF-PSPNet by using automat-
ically labeled pinhole images. We consider two settings in-
cluding the combination of Vistas and ADE20K [67] datasets,
and the combination of Vistas and IDD20K. We use unlabeled
images from their test sets and generate annotations with the
teacher network. Both settings reach similar IoU but much
lower than ours. This indicates that the improved performance
is not simply due to more training samples but also the
knowledge in panoramic images. Especially, our multi-source
omni-supervised solution that covers omnidirectional data in
the training, helps materialize the knowledge for context-
ware panoramic segmentation. Finally, when our solution is
operating in the single-source omni-supervised manner, i.e.,
only with Vistas-space data, it can reach high segmentation
accuracy for common object classes like cars and persons.
In contrast, our multi-source solution excels at identifying
challenging stuff classes including sidewalks and crosswalks
which exhibit higher diversity in real-world surroundings,
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(a) Panorama (b) Prediction in Vistas space (c) Prediction in IDD20K space

Fig. 9. Qualitative examples of panoramic semantic segmentation on panoramas from WildPASS dataset: (a) Panoramas, (b) Predictions in Vistas space and
(c) Predictions in IDD20K space.

(a) Panorama (b) DenseASPP [3] (c) Ours

Fig. 10. Qualitative examples of panoramic semantic segmentation on panoramas from WildPASS dataset predicted by our approach compared with the
state-of-the-art: (a) Panoramas, (b) Predictions of DenseASPP [3] and (c) Our omni-supervised ERF-PSPNet with concurrent attention.

while only slightly falling behind for those common objects.
Thereby, our multi-source solution surpasses the single-source
omni-supervised method by a margin of 2.8% in IoU, which
indicates that the increased diversity is essential for robust
segmentation in the wild.

E. Qualitative Analysis and Discussion

Prediction in Multiple Spaces. Fig. 9 displays represen-
tative predictions of our omni-supervised ERF-PSPNet with
concurrent attention in multiple semantic spaces on panoramas
from WildPASS dataset. On the one hand, clear and highly
robust segmentation is achieved in the unseen panoramic
domains. Besides, in this demonstration, it is shown that
while only a single model is yielded, it delivers multiple
sets of visual classes that are complementary to each other.
For instance, as it can be seen from Fig. 9b, crosswalks and
curbs are predicted in the Vistas space which are absent in
IDD20K. In comparison, IDD20K-space results can help to
foresee safety-critical classes like auto-rickshaws (“tuk-tuk”
vehicles) whose behavior is highly unpredictable, as shown
in Fig. 9c (denoted in yellow). As a result, the detectable
semantics and recognizable classes have been enriched, which
are often required and useful for upper-level applications to
gain a complete scene comprehension, especially in real-world
unconstrained surroundings.

TABLE VII
SPEED ANALYSIS IN FRAMES PER SECOND (FPS) FOR DENSEASPP,

DS-PASS AND ERF-PSPNET VARIANTS ON VARIOUS GPU PROCESSORS.

Network Speed on GPU processors
Titan RTX 1080Ti 2080Ti

DenseASPP (DenseNet121) [3] 70.6 30.8 57.7
DS-PASS (SwaftNet) [4] 209.9 76.3 56.8

ERF-PSPNet 164.7 91.2 132.1
ERF-PSPNet+OC [28] 121.3 72.0 87.6

ERF-PSPNet+scSE [21] 139.5 74.3 115.0

ERF-PSPNet+CA 122.2 77.0 97.0

Qualitative Comparison. Fig. 10 shows the segmentation
results of our solution in comparison with one of the state-of-
the-art accurate network DenseASPP [3]. It can be clearly seen
that DenseASPP with a large receptive field is vulnerable when
taken to the panoramic imagery in the wild. Consequently, it
produces unstable semantic maps due to inappropriate context
awareness. In contrast, our solution enables the efficient ERF-
PSPNet to reliably leverage the contextual information in
panoramas thanks to both the omni-supervision and concur-
rent attention. Thereby, it yields high-quality semantics and
consistent roadways segmentation, even if they feature distinct
global distribution to those in pinhole images.

Speed Analysis. In Table VII, we report the speed measured
in Frames Per Second (FPS) of ERF-PSPNet variants at
the input resolution of 1024×512. The FPS metric directly
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corresponds to the processing time tested on different GPU
processors including NVIDIA Titan RTX, GTX 1080Ti and
RTX 2080Ti, where the batch size has been set to 1 to
simulate real-time applications. Following [9], we report the
mean FPS results over 400 forward passes running through
all panoramas in the PASS dataset. In Table VII, we com-
pare with DenseASPP [3], a state-of-the-art accurate network
while requiring merely moderate computation power, and DS-
PASS [4], a panoramic segmentation approach with one of
the best efficient architecture SwaftNet. While DS-PASS is
very fast on Titan RTX with sufficient computation budget, it
slows down on other cost-effective GPUs, which is due to the
separation and fusion process which significantly burdens the
deployment. In contrast, from Table VII, it can be seen that
the high inference speed of ERF-PSPNet is maintained at the
level far above the real-time constraint. As another illustration
of this superiority, PASS only runs at 40.2FPS (reported in [9])
with the same ERF-PSPNet architecture on NVIDIA Titan
RTX, which is clearly slower than our approach (more than
120.0FPS). This is because with our omni-supervised solution,
no panorama separation nor domain adaptation is incurred in
the deployment, while the proposed concurrent attention only
marginally increases the computational complexity.

VI. CONCLUSION

In this paper, we have addressed panoramic semantic seg-
mentation in the wild. We have observed that state-of-the-art
CNNs such as PSPNet and DANet, despite their wide-range
context sensing capacity which improves their accuracy in
pinhole data, suffer from large performance deterioration when
taken to panoramic imagery which features distinct global
contextual information. To explicitly exploit the width-wise
and height-wise contextual cues markedly available in wide-
FoV panoramas, we have presented a concurrent horizontal
and vertical attention module. The potential of rich global
context information is unlocked also thanks to our designed
multi-source omni-supervised learning scheme, which covers
the panoramic imagery in the training of efficient CNNs.

We have put forward the WildPASS dataset, with panoramas
collected from all around the world embracing challenging
unconstrained surroundings, to facilitate credible evaluation
of semantic segmentation CNNs in panoramic imagery. An
extensive set of experiments demonstrates the effectiveness
of our proposals, which enable high-efficiency architectures
like ERF-PSPNet to attain significant generalization benefits
in open panoramic domains, outperforming the state-of-the-art
on both the public PASS and the novel WildPASS datasets.

In the future, we will expand the WildPASS dataset by col-
lecting world-wide panoramas from more cities and creating
annotations on more classes like structured objects including
truck and bus. We have the intention to explore uncertainty-
inspired multi-space fusion and efficiency-oriented non-local
modules to capture omni-range contextual dependencies. We
aim to fulfill panoramic panoptic segmentation and change
detection to enable a more unified and comprehensive scene
understanding for autonomous navigation applications.
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