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Abstract— In recent years, intelligent driving navigation has
made considerable progress, and semantic segmentation is one
of the most advanced scene perception methods. At present,
traditional semantic segmentation methods can use RGB images
for detection of obstacles that are clearly visible in outdoor
scenes. However, in the face of complex realistic driving scenes,
RGB images cannot provide sufficient information. We need
some other modal information to supplement the RGB infor-
mation. In this paper, we propose Non-Local Fusion Network
(NLFNet), which is a semantic segmentation network that can
selectively fuse multimodal input information in an adaptive
manner. It can use complementary information collected by
different optical sensors to extract effective features for fusion.
Thereby, it improves the segmentation accuracy of the network
and solves the problem of object recognition in various challeng-
ing real-world scenes. We conduct comprehensive experiments
to verify the effectiveness and generalization ability of the
framework across RGB-Depth, RGB-Polarization, and RGB-
Thermal image semantic segmentation, which is especially
suitable for autonomous driving and robot vision applications.

I. INTRODUCTION

With the development of deep learning and Convolutional
Neural Networks (CNNs) [1], the perception and understand-
ing of outdoor scenes have become a hot topic for intelligent
driving cars and intelligent mobile robots for navigation
assistance. Image semantic segmentation is the basic task
of computer vision. It aims to assign a semantic category
to each pixel in the image, that is, to identify and classify
objects at the pixel level. At present, many neural networks
for semantic segmentation have been proposed, such as
FCN [2], PSPNet [3], U-Net [4], etc. Thanks to the archi-
tectural advances and the emergence of large-scale datasets,
these networks can accurately segment outdoor scenes under
favorable environmental and lighting conditions, e.g., they
have a good distinction between cars and backgrounds in
general road-driving street scenes (see Fig. 1).

The above-mentioned networks all use the information of
RGB images for semantic segmentation, because RGB im-
ages can provide color information and texture information
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Fig. 1. Examples of images and recognition results: (a) RGB im-
age, (b) Multimodal image (From top to bottom: depth image from
Cityscapes [7], polarization image from ZJU-RGB-P [8], and thermal image
from MFNet [9]), (c) Segmentation result using only RGB image.

contained in the target object, and help the neural network
of deep learning to recognize and segment the input image.
But this also has certain flaws. When the object and the
background have similar colors and textures, it is difficult
for the neural network to distinguish them completely. For
example, in detecting obstacles with high reflectivity such as
glass and metal, the existing semantic segmentation methods
are limited because these objects are difficult to detect, as
shown in Fig. 1, and the existence of these obstacles is
more dangerous for navigation assistance. They may pose
potential dangers to self-driving cars and intelligent robots.
In addition, under adverse weather conditions, the use of
traditional detection methods will also reduce the accuracy
of object segmentation. This has aroused increasing attention
and research interests in the field of computer vision and
intelligent robots [5], [6].

When the color and texture information of the RGB
image are not enough for the network to use for semantic
segmentation, it is desired to combine the rich information of
other modalities to supplement, so as to perform more accu-
rate semantic segmentation of the target image. Considering
the modal sensors that contain useful optical information,
currently there are mainly color sensors, depth sensors,
infrared sensors, polarization sensors, and event cameras,
which contain various types of optical information [10]. For
example, the depth image contains more object position and
contour information, the polarization image can obtain the
special polarization degree and polarization angle of the



objects different from the background, and the infrared image
can provide the thermal information of the objects and so on.

In this paper, we propose Non-Local Fusion Network
(NLFNet), a semantic segmentation network that can adap-
tively fuse multimodal input data, and use the multimodal
image information collected by different optical sensors for
effective feature extraction and fusion. We conduct exten-
sive experiments, respectively fusing RGB information and
depth information on the Cityscapes dataset [7], fusing RGB
information and polarization information on the ZJU-RGB-
P dataset [8], and fusing RGB information and thermal
infrared information on the dataset provided in the work of
MFNet [9]. The results show that NLFNet can effectively
integrate and fuse multimodal information, significantly im-
proving the accuracy of semantic segmentation, and it has
a strong generalization capacity. In summary, this work
delivers the following contributions:
• We propose NLFNet, which is a semantic segmentation

network that effectively integrates multimodal image
data. Compared with a single RGB network architec-
ture, the segmentation of various objects are enhanced.

• The proposed network adaptively extracts complemen-
tary features of different modal input images, uses
dependency information with long-range context priors,
and improves accuracy of semantic segmentation.

• We conduct extensive experiments on different multi-
modal datasets, and comprehensively analyze the effec-
tiveness and generalization ability of NLFNet in a wide
variety of outdoor scenes.

II. RELATED WORK

A. Semantic Segmentation Network

Since Fully Convolution Network (FCN) [2] implemented
end-to-end pixel-level object classification, Convolutional
Neural Networks (CNN) have developed rapidly in the field
of semantic segmentation. SegNet [11] proposed an encoder-
decoder network structure based on VGG16 [12]. U-Net [4]
adds skip connections between the encoder and the decoder
to merge low-level and high-level feature information. Deep
network structures such as PSPNet [3] and DeepLab [13]
construct a multi-scale representation, which increases the
receptive field of the model. SENet [14] proposed a channel
attention method and HANet [15] explored a height-driven
context prior. DANet [16] and ECANet [17] devised variants
of the non-local block [18] to capture long-range contextual
dependency. Moreover, SETR [19], SegFormer [20], and
Trans4Trans [21] revisited scene parsing from a sequence-
to-sequence perspective, whereas MaskFormer [22] views
semantic segmentation as a mask classification problem.

In addition, some networks have been improved towards
real-time predictions like ERFNet [23] and SwiftNet [24].
They have applied early downsampling, filter decomposition,
multi-branch structure, and ladder-style upsampling methods
to effectively improve the efficiency of the network. Net-
works such as ACNet [25] and RFNet [26] use attention
mechanisms and bridge connections, so that the semantic

Fig. 2. Overview of NLFNet: the proposed network architecture based on
non-local fusion for multimodal semantic segmentation.

segmentation model can be executed quickly with multi-
level feature aggregation. In this work, we leverage non-local
mechanism and design an attention-based fusion architecture
for multimodal semantic segmentation generalizable across
various image modalities.

B. Multimodal Fusion Semantic Segmentation

Although existing networks based only on RGB informa-
tion have made some progress in the architecture, due to the
limited input information, they will have certain restrictions
on the segmentation performance of the image. In some com-
plex environments or under challenging conditions, it is nec-
essary to increase the richness of input information. There-
fore, semantic segmentation network based on multimodal
sensor data fusion has been widely researched. FuseNet [27]
introduced the depth information of the environment on the
basis of RGB images, and performed the fusion of RGB
image and depth image features in the middle layer of the
encoder and decoder. HeatNet [28] used infrared information
as auxiliary information and adversarial training strategies
to improve the performance of the model at night, which is
challenging for RGB semantic segmentation methods [29],
[30]. EAFNet [8] incorporated the polarization information
of color polarization images to train the model. ISSAFE [6]
leveraged event data and perform dense-to-sparse fusion to
capture dynamic context information for improving semantic
segmentation in extreme accident scenes. Moreover, there are
many specialized RGB-D [31], [32] and RGB-T [33], [34],
[35], [36] semantic segmentation methods. These networks
improve the segmentation performance of objects in certain
scenes, but it is desirable to design a robust fusion network
that can effectively fuse different multimodal data.

III. METHODS

In this section, we introduce the architecture of our
designed Non-Local Fusion Network (NLFNet) for robust
semantic segmentation across different modality combina-
tions. In addition, we describe the characteristics of different
multimodal datasets.

A. Network Architecture

Inspired by efficient networks such as SwiftNet [24] and
RFNet [26], our NLFNet uses an encoder-decoder structure
for semantic segmentation. The entire network architecture



Fig. 3. Schematic diagram of Non-Local Fusion (NLF) Module.

of NLFNet is shown in Fig. 2. In the encoder part, we have
two independent branches. We choose ResNet-18 [1] as the
backbone of each network branch, because it has an appropri-
ate depth and the residual structure, and at the same time has
high computational efficiency. The two branches respectively
perform downsampling and extract the latent features of the
RGB images and the other modal images, and they are
merged with the fusion operations. After obtaining the fused
features, we use the Spatial Pyramid Pool (SPP) module [3],
[26] to expand effective receptive fields and generate fea-
ture maps with more global contextual information, which
are critical for accurate semantic segmentation. Finally, we
perform the corresponding operations of the decoder to
gradually restore and upsample the semantically-rich visual
features from the coarse resolution to the input resolution.
With reference to SwitfNet [24], we leverage three efficient
upsampling modules, and merge the information of the RGB
branch through skip connections. The 1×1 convolutions used
in the upsampling process can connect the key elements of
feature maps between deep and shallow layers to enhance
detail sensitivity in the final semantic prediction and thereby
improve the segmentation accuracy.

Inspired by Non-Local block [18] and NANet [32], we
construct a Non-Local Fusion (NLF) module to integrate
complementary information learned from the RGB branch
and the other branch to achieve multi-level fusion of feature
maps. The NLF module is mainly divided into two steps,
including two sub-modules, as shown in Fig. 3. First, we es-
tablish long-range contextual dependency of the RGB branch
and the other modal branch in space, by using a module
termed Spatial Dependency Module (SDM). Then, we use
a Channel Dependency Module (CDM) to establish cross-
modal dependency on the two feature maps from different
branches in the channel dimension.

For SDM, as shown in Fig. 4, for each spatial position
in the original RGB image and the other modal image, it
first performs global average pooling along the horizontal
and vertical directions to extract the non-local information
of the features, as depicted in the following equations:

Fw(c, 1, j) =
1

H

H−1∑
i=0

F (c, i, j) (1)

Fh(c, i, 1) =
1

W

W−1∑
j=0

F (c, i, j) (2)

After that, in the horizontal and vertical directions, we use
3× 1 and 1× 3 convolutions to expand the receptive fields
respectively. Subsequently, the features are expanded to the
original dimensions via upsampling, so we can obtain global
width- and height-driven features Fw

RGB−O and Fh
RGB−O,

as it can be seen in Fig. 4.

Fig. 4. Spatial Dependency Module (SDM).

By adaptively fusing non-local features including RGB
features and O features (denoting the Other modality), a
feature FS that contains long-range dependencies in space
is established. Finally, by fusing FS with the original input
features FRGB and FO via feature map addition, respectively,
the integration of local RGB-O features and non-local RGB-
O features is realized. Thereby, each spatial position of
the original FRGB feature can establish relationship with
different positions of the FO feature.

For CDM, as shown in Fig. 5, F ′RGB and F ′O outputs
∈ RH×W×C from the SDM module are concatenated along
the channel dimension to obtain the merged feature map
∈ RH×W×2C , and then global average pooling is performed
to obtain a squeezed feature map ∈ R1×1×2C . It will be
adaptively transformed into two independent embeddings
∈ R1×1×C via fully conneted layers. Subsequently, the
dependency weights WRGB and WO are obtained via a
Sigmoid activation layer. Finally, the output fused feature
FRGB−O is selectively obtained by associating the weights
with the input features, as depicted in the following equation:

FRGB−O = F ′′RGB⊕F ′′O
=
(
F ′RGB⊗WRGB

)
⊕
(
F ′O⊗WO

) (3)

In this way, we extract the nonlinear interactions between
the cross-modal channels and establish non-local contextual
dependencies between different modalities.

Fig. 5. Channel Dependency Module (CDM).

B. Multimodal Dataset

At present, the mainstream semantic segmentation meth-
ods mostly use RGB images as input information, because
different types of objects have different color and texture
information in RGB images, which can help the network
to perform deep learning. Although the use of existing RGB
images for training has a good semantic segmentation effect,
the performance of image segmentation will be limited in



Fig. 6. Preprocessing of thermal image.

some complex scenes or under some challenging conditions.
Therefore, it is necessary to use multimodal datasets and
provide other forms of complementary data to enrich the
input information of the semantic segmentation network.

RGB-Depth Fusion. Depth images can help the network to
obtain the position and contour information of the objects,
and the fusion of RGB information and depth information
can better distinguish objects with different spatial positions.
Cityscapes [7] is a common multimodal dataset, which con-
tains outdoor street-view data of multiple cities. It provides
5000 sets of RGB-D images. By using the semi-global
matching algorithm [37], disparity images can be obtained.
It contains fine pixel-level annotations of 19 categories, with
a resolution of 2048× 1024. We use 2975 images from the
training set for training and 500 images from the validation
set for evaluation.

RGB-Thermal Fusion. At night or in places with insuffi-
cient light, objects and backgrounds in RGB images have
similar color information and are difficult to distinguish.
Thermal images can provide special infrared characteristics
of objects, helping to segment objects such as people and
cars at night. The RGB-Thermal dataset provided by the
work of MFNet [9] contains 1569 images (820 images were
taken during the day and 749 images were taken at night). 8
types of obstacles are marked with a resolution of 640×480.
The training set includes 50% of the daytime images and
50% of the nighttime images, whereas the validation set
contains 25% of the daytime images and 25% of the night-
time images [9]. Through preprocessing, the RGB image and
thermal infrared image are extracted from the combined 4-
channel image, as shown in Fig. 6.

RGB-Polarization Fusion. High-reflectivity objects such as
glass and cars have RGB information that are easily confused
with the environment. In a polarized image, objects with high
reflectivity have a special polarization angle, which can be
used to better segment these objects. The public dataset ZJU-
RGB-P developed in our previous work [8] contains 394
groups of matched color images, each group has 4 images
with different polarization angles. Including 9 categories of
objects, the resolution is 1224 × 1024. We use 344 images
from the training set for training, and the other 50 images as
the validation set. As shown in Fig. 7, through preprocessing,
the polarization degree image AoLP can be obtained via the

Fig. 7. Preprocessing of Polarization image: (a) RGB images at four
directions and (b) Polarization image.

following transformation:

AoLP =
1

2
arctan

( I0 − I90
I45 − I135

)
, (4)

where I denotes the intensity image with the corresponding
polarization angle.

IV. EXPERIMENTS

In this section, we conduct a comprehensive analysis
through extensive experiments.

A. Implementation Details

In this work, we utilize the three multimodal semantic
segmentation datasets mentioned in the previous section. We
perform data augmentation operations on all three datasets.
Specifically, we first rescale the image with a random factor
between 0.75 and 1.5, then randomly crop the images with
a crop size of 480 × 480 , and finally perform a random
horizontal flip.

We use CUDA 10.0, CUDNN 7.6.0, PyTorch 1.1 and an
NVIDIA GeForce GTX 1080Ti GPU for model training. We
use the pre-training weights on ImageNet [38] to initialize
the ResNet-18 in the RGB branch and the O branch, and
use the Adam optimizer [39] to optimize the learning rate.
We set the initial learning rate to 4 × 10−4. The cosine
annealing learning rate scheduling strategy is used to adjust
the learning rate, and the minimum value in the last epoch is
1× 10−6. In order to prevent overfitting, we use L2 weight
regularization, and set the weight decay to 1 × 10−4. We
trained all models for 200 epochs with a batch size of 8.
We use mean Intersection of Union (mIoU) to evaluate the
segmentation accuracy of models, which represents the ratio
of the intersection and union of the inference result and the
ground truth.

B. Results and Analysis

Ablation Study. As shown in Table I, we conduct ablation
studies on the ZJU-RGB-P dataset [8] with different net-
works to explore the effect of changes in the network ar-
chitecture and fusion schemes on the segmentation accuracy.
The single RGB method means that a single-branch network
model SwiftNet is used and only RGB images are used as
input information, achieving an mIoU of 80.3%. The single
P method means that only the polarized image information
is used. Compared with the single RGB method, mIoU is
reduced to 73.5%. This is because the RGB image contains
more effective information than the polarized image. In the



TABLE I
PERFORMANCE OF NLFNET ON THE ZJU-RGB-P VALIDATION DATASET [8] WITH DIFFERENT DESIGN CHOICES.

Network Polarization Dual-branch RGB-P fusion Element-wise add mIoU(%)
SwiftNet (Single RGB) 7 7 7 7 80.3

SwiftNet (Single P) 7 7 3 7 73.5
SwiftNet (RGB-P-Stack) 3 7 3 7 80.2

NLFNet 3 3 7 3 84.4

TABLE II
ACCURACY ANALYSIS ON ZJU-RGB-P DATASET [8] INCLUDING PER-CLASS ACCURACY IN IOU (%) AND MEAN IOU (MIOU).

Network Building Glass Car Road Vegetation Sky Pedestrian Bicycle mIoU(%)
SwiftNet (RGB) 83.0 73.4 91.6 96.7 94.5 84.7 36.1 82.5 80.3
SwiftNet (Pola) 74.0 66.6 87.1 94.7 91.1 76.1 32.9 65.5 73.5
NLFNet (Ours) 85.4 77.1 93.5 97.7 93.2 85.9 56.9 85.5 84.4

TABLE III
COMPARATIVE RESULTS (%) ON THE RGB-THERMAL VALIDATION SET [9].

Network Method Unlabeled Car Person Bike Curve Car Stop Guardrail Color Cone Bump mIoU(%) FPS
DANet [16] RGB 96.3 71.3 48.1 51.8 30.2 18.2 0.7 30.3 18.8 41.3 -
ERFNet [23] RGB 95.8 64.8 36.5 42.4 20.5 10.0 0.0 0.0 28.8 33.2 172.1

DUC [40] RGB 97.7 82.5 69.4 58.9 40.1 20.9 3.4 42.1 40.9 50.7 81.9
HRNet [41] RGB 98.0 86.9 67.3 59.2 35.3 23.1 1.7 46.6 47.3 51.7 -
ACNet [25] RGB-D 96.7 79.4 64.7 52.7 32.9 28.4 0.8 16.9 44.4 46.3 -
SA-Gate [5] RGB-D 96.8 73.8 59.2 51.3 38.4 19.3 0.0 24.5 48.8 45.8 -
LDFNet [42] RGB-D 95.3 67.9 58.2 37.2 30.4 20.1 0.8 27.1 46.0 42.5 -
FuseNet [27] RGB-D 51.8 75.6 66.3 51.9 37.8 15.0 0.0 21.4 45.0 45.6 255.3
RTFNet [43] RGB-T 98.5 87.4 70.3 62.7 45.3 29.8 0.0 29.1 55.7 53.2 34.1
MFNet [9] RGB-T 96.9 65.9 58.9 42.9 29.9 9.9 0.0 25.2 27.7 39.7 229.9

PSTNet [33] RGB-T 97.0 76.8 52.6 55.3 29.6 25.1 15.1 39.4 45.0 48.4 -
NLFNet (Ours) RGB-O 97.3 88.5 69.0 63.9 47.8 25.6 6.1 45.0 44.7 54.3 35.6

RGB-P-Stack method, we concatenate the RGB image and
the polarization image to form a 4-channel image and input it
to a single branch to obtain an mIoU of 80.2%, which proves
that the polarization image can provide diversified features
and serve as supplementary information for the RGB image.
However, this method has a lower performance compared
with our NLFNet, because the distributions of RGB infor-
mation and polarization information are different. Pure con-
catenation will cause interference between them, which will
adversely affect the fusion of features of different modalities.
NLFNet inputs the RGB image and the polarization image
to different paths and uses element-wise addition of the two
kinds of information in the final feature aggregation, which
obtains an mIoU of 84.4%, indicating that our network model
can effectively extract and fuse informative RGB features and
polarization features, significantly improving the accuracy of
RGB-P semantic segmentation.
Quantitative Performance Study. We verify the perfor-
mance of NLFNet compared with the SwiftNet baselines
on the ZJU-RGB-P dataset, and the quantitative results are
shown in Table II. It can be seen that the network model
that combines polarization information and RGB information
promotes the segmentation of objects with special polariza-
tion characteristics, such as glass (73.4% to 77.1%) and cars
(91.6% to 93.5%). In addition, the IoU of other types of
objects have also been improved, such as pedestrians (36.2%
to 56.9%). At the same time, mIoU increases from 80.3% to
84.4%. It shows that our network effectively combines RGB
characteristics and polarization characteristics and improves
the segmentation accuracy of the network.

Table III shows the comparison of the numerical perfor-
mance of different single-modal and multi-modal networks

TABLE IV
COMPARATIVE RESULTS (%) ON THE DAYTIME AND NIGHTTIME

SCENARIOS ON THE RGB-THERMAL VALIDATION SET [9].

Network Multimodal Daytime Nighttime mIoU(%)

U-Net [4] 7
3 7 37.5
7 3 37.0

SegNet [11] 7
3 7 29.5
7 3 27.4

MFNet [9] 3
3 7 36.1
7 3 36.8

FuseNet [44] 3
3 7 41.0
7 3 43.9

RTFNet [43] 3
3 7 45.8
7 3 54.8

FuseSeg [44] 3
3 7 47.8
7 3 54.6

NLFNet 3
3 7 50.3
7 3 54.8

on the RGB-Thermal dataset provided by the work of
MFNet [9]. The compared state-of-the-art networks cover
DANet [16], ERFNet [23], and DUC [40], designed for
RGB semantic segmentation. We also compare with RGB-D
networks including ACNet [25], SA-Gate [5], LDFNet [42],
and FuseNet [27], as well as RGB-T networks including
RTFNet [43] and MFNet [9]. Our NLFNet inputs RGB
information and infrared information into the network for
fusion, which attains an mIoU of 54.3%. It achieves good
segmentation accuracy for most categories, such as attaining
the IoU of cars and bike with 88.5% and 63.9%, respectively.
While our method is inferior to RTFNet in the classes of Per-
son, Car Stop, and Bump, RTFNet relies on a large backbone
of ResNet-152, which is significantly more computation-
demanding than ResNet-18 used in our approach.

At night, mIoU reaches 54.8% as shown in Table IV,



Fig. 8. Qualitative result comparison between the RGB-only network and
our RGB-P NLFNet on ZJU-RGB-P dataset [8]. From left to right: RGB
image, polarization image (AOLP), RGB-only segmentation, the result of
NLFNet, and ground truth.

which demonstrates that NLFNet can effectively use the
infrared information of objects to improve the segmentation
accuracy in weak-illumination scenarios. The last column of
Table III indicates the inference speed for images with a
resolution of 640× 480 on the GTX 1080Ti GPU processor.
NLFNet has reached 35.6FPS (Frames Per Second). This
shows that NLFNet still has a good real-time performance
while improving the accuracy of image segmentation.

In Table V, we further compare NLFNet with some
representative RGB or RGB-D networks on the Cityscapes
validation set. NLFNet achieves an mIoU of 72.3%, which
proves that the position and contour information in the
depth image can supplement RGB features, and our method
can effectively fuse multimodal features to achieve good
segmentation accuracy in urban driving scenes.

TABLE V
COMPARISON OF SEMANTIC SEGMENTATION METHODS ON THE

VALIDATION SET OF CITYSCAPES [7].

Network Multimodal mIoU(%)
FCN8s [2] 7 65.3

DeepLabV2-CRF [13] 7 70.4
ERFNet [23] 7 65.8

ERF-PSPNet [45] 7 64.1
SwiftNet [24] 7 72.0

VGG-D (ScaleInvariant) [46] 3 64.4
LDFNet [42] 3 68.5

GoogLeNet (NiN-2) [47] 3 69.1
RFBNet (ERFNetEnc) [48] 3 72.0

NLFNet (Ours) 3 72.3

Qualitative Performance Study. In order to obtain quali-
tative results, we use SwiftNet based on RGB information
and NLFNet based on multimodal input information to
conduct experiments on the ZJU-RGB-P, RGB-Thermal, and
Cityscapes datasets, respectively, and the visual comparison
results are shown in Fig. 8, Fig. 9, and Fig. 10. In Fig. 8,
NLFNet, which incorporates polarization images, has better
segmentation results for objects with special polarization

Fig. 9. Qualitative result comparison between the RGB-only network and
our RGB-T NLFNet on RGB-Thermal dataset [9]. From top to bottom:
RGB image, thermal infrared image, RGB-only segmentation, the result of
NLFNet, and ground truth.

characteristics, such as cars, bicycles, and glasses like the
car windows.

NLFNet integrates the special infrared thermal information
of the objects, which significantly improves the segmentation
accuracy of pedestrians in the nighttime environment, as
shown in Fig. 9. In Fig. 10, NLFNet, which incorporates
depth features, can make good use of the position and
contour information of objects, improving the segmentation
accuracy of cars, trucks, and pedestrians. The comprehensive
analysis with these results proves that our NLFNet can effec-
tively integrate the features coming from different modalities
and improve the accuracy of segmentation, which has a high
generalization capacity across various sensor combinations.

Fig. 10. Qualitative result comparison between the RGB-only network and
our RGB-D NLFNet on Cityscapes dataset [7]. From left to right: RGB
image, depth image, RGB-only segmentation, the result of NLFNet, and
ground truth.

V. CONCLUSION

In this work, we investigate generalizable multimodal
perception and propose a semantic segmentation network
NLFNet suitable for outdoor scene understanding, which
effectively solves the problem of object segmentation in
various challenging scenarios. The designed NLF module can
perform adaptive feature extraction and fusion of comple-
mentary information from different modal input images, and
leverage the dependence information with long-range contex-
tual and positional priors to improve the accuracy of semantic
segmentation. We have conducted extensive experiments and
analysis on ZJU-RGB-P, RGB-Thermal (MFNet), and RGB-
D (Cityscapes) datasets, which verify the effectiveness and
generalization ability of NLFNet across several multimodal
sensor combinations.
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