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Abstract— Semantic segmentation renders a unified way of
surrounding perception, where most of driving scene detection
tasks can be covered by running a single efficient ConvNet
through a forward pass. However, current frameworks posit the
closed-world paradigm expressed as a single source of distribu-
tion over a predetermined set of visual classes, forgetting that a
deep model must be deployed in the wild facing unseen domains
and unforeseen hazards. In spite of being accurate in its comfort
zone, the segmentation model may not generalize well to a new
domain. In addition, a model trained with single dataset is
heavily limited in terms of recognizable classes. In this paper, we
propose an omni-supervised learning framework for semantic
segmentation which is able to leverage heterogeneous data
sources. Our omni-supervised training framework incorporates
all available labeled and unlabeled data, meanwhile bridges
multiple training sets to be capable of recognizing more classes
that are needed for autonomous navigation application at hand
in the new domain. A comprehensive variety of experiments
shows that with the proposed multi-source omni-supervised
learning solution, an efficient ConvNet like our ERF-PSPNet
attains significant robustness gains in open domains that are
of critical relevance to real deployment of vision algorithms.
Our approach surpasses the state of the art on the highly
unconstrained PASS and IDD20K datasets.

I. INTRODUCTION

Semantic segmentation supposes a unified manner of sur-
rounding scene sensing to cover most of perception needs of
Intelligent Vehicles (IV) [1][2]. Emergence of large natural
datasets and architectural advances of deep models have rein-
forced the excellence of Convolutional Networks (ConvNets)
at this task, allowing them to predict pixel-wise semantics
over a predetermined set of visual classes both accurately
and efficiently with a single forward pass [3].

Unfortunately, existing frameworks assume the closed-
world evaluation with a single-source setting, posing over-
whelming difficulties for real-life applications, as a deep
model may be biased towards a comfortable domain while
not generalizing in the wild, yet a single training dataset is
far from being comprehensive [4]. When a trained model
is taken from its comfort zone to an unseen domain, the
performance usually declines dramatically and even catas-
trophically due to the large imagery gap between real-world
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Fig. 1. Overview of the proposed omni-supervised solution: an efficient
ConvNet is trained using both labeled and unlabeled images, yielding a
single unified model that is robust across heterogeneous unseen domains.

heterogeneous domains [5][6]. Besides, a model learned with
a single dataset is heavily limited in terms of recognizable
classes, which are only a subset of semantics required to
gain a complete scene understanding. The comprehension
of a vehicle’s surroundings becomes even more challenging
in specific situations such as intersections, roundabouts or
unconstrained environments with exceedingly diverse dy-
namic traffic participants whose behaviors are highly unpre-
dictable [3]. To promote the detection of unforeseen hazards,
one has to perform post-processing or run another model
trained on additional sets, which both significantly increase
inference latency and computation complexity [7].

In the vision community, there are already a large body
of semantic segmentation datasets [8][9][10] available to
produce trained models, generally practitioners only use one
due to the classes contradictions among the datasets. For
example, road surfaces are simply labeled as road and side-
walk in Cityscapes [4], but in Mapillary Vistas [8], they are
labeled as road, sidewalk with curbs between them, and addi-
tional roadway classes like crosswalks. In addition, riders in
Cityscapes would be divided into motorcyclists and bicyclists
if from Vistas. There are novel classes like auto-rickshaws
that are not existing in Cityscapes (European streets) but
widespread in the unstructured IDD dataset (Asia) [10].
While one can leverage model variants trained using multiple
datasets or domain bridges [5], this is unsatisfactory for IV
applications as the same model should be directly deployable
in a broad spectrum of environments (see Fig. 1).

There are proposals that aim to solve the conflictions
between the class hierarchies [11][12], but only the annotated
images from these large-scale databases are fed with the
model to train in a fully-supervised way, leaving the diversity



implicated in the unlabeled data unexploited. On the other
hand, since efficient ConvNets are usually benchmarked
against datasets with a limited set of classes, it was stated that
they cannot resolve the real-world complexity burdened by
the increased number of visual classes on the semantically-
connected datasets [12].

To achieve real-world robustness in efficient architectures,
this paper proposes an omni-supervised learning framework
for semantic segmentation which exploits multiple hetero-
geneous datasets. Following the concept of data distilla-
tion for omni-supervised learning [13], the learner in our
framework incorporates all available labeled and unlabeled
images. Meanwhile, the proposed framework bridges mul-
tiple domains in a general way without having to regulate
the complex class hierarchies among datasets. Vitally, our
experiments show that an omni-supervised efficient ConvNet
delivers both rich sets of recognizable classes and high
generalization capacities empowered by multi-source data
and data distillation. To the best of our knowledge, this is the
first time that omni-supervised learning has been leveraged
to address navigational scene parsing.

More precisely, we involve large-scale Mapillary Vistas [8]
and ADE20K/IDD20K [9][10] datasets to perform learning
and validation. Taking a key step further, we verify the
performances in the totally unseen domains of Panoramic
Annular Semantic Segmentation (PASS) [2][14] and Gardens
Point [15]. For Gardens Point set, we create pixel-wise
semantic traversable area annotations to facilitate evalua-
tion. With a comprehensive variety of experiments on these
navigational scene parsing datasets, the ultimate goal is to
yield a single model that works robustly across different
domains, including known domains and more crucially new,
open domains that are of critical relevance to real deployment
of efficient ConvNets like ERF-PSPNet [1][3].

We also investigate the generalization benefits in diverse
road-sensing datasets [10][16][17], showing that our ap-
proach supports robust semantic perception even in adverse
conditions such as the night scenarios in multimodal walking
and nighttime driving domains (see Fig. 1). Our proposal
surpasses the state of the art on IDD20K and PASS datasets,
both of which reflect the challenges of IV applications in
unconstrained street scenes. Our codes and datasets will be
made publicly available at 1.

II. RELATED WORK

A. Architectural Advances of Semantic Segmentation

Fully Convolutional Network (FCN) [18] opens the vista
of deep end-to-end semantic segmentation, whose perfor-
mance was exceeded by subsequently appeared DRNet (with
dilated convolution) [19] and PSPNet (with pyramid pool-
ing) [20]. In [7], dilated convolutions were extended to
hierarchical architectures to predict pixel-wise specular se-
mantics such as water hazards for wearable robotics. In road
scene understanding-desired IV applications, ERFNet [21],

1Datasets and codes of omni-supervised efficient ConvNet: https://
github.com/elnino9ykl/OmniSupervised-ConvNet

ERF-PSPNet [1][3], SwiftNet [22] were developed to boost
the real-time performance. Attention connections (Swaft-
Net) [2] were put forward to improve the detail-sensitivity,
rendering surroundings segmentation both swiftly and accu-
rately, without sitting on one side of the balance.

B. Domain Adaptation and Semi-Supervised Learning

To address the dearth of large-scale database that is critical
to produce robust segmentation models, synthetic data have
been frequently used to augment the training set [3][23].
The mismatch between synthetic and real scenes arouses
an army of domain adaptation researches [5][6][16][24]. A
critical subset of these proposals particularly aims to rectify
the imagery gap and improve the performance in adverse
conditions (e.g. nighttime) based on curriculum learning [16]
or unsupervised image translation [5][6], assuming clear
boundaries between different domains, such as the day and
night. Another appealing line is semi-supervised learning that
mitigates the deficiency of pixel-aware labels by using weak
supervision like bounding-box annotations [25].

While previous adaptation approaches pride their perfor-
mance in discrete domains [3][5][6], we aim to produce a
unified model that generalizes in open domains previously
unseen during the training stage without defining any bound-
aries. Sharing the similar spirit for deployment regardless
of the training domain, [26][27] explored aggressive data
augmentation and universal semi-supervised knowledge ag-
gregation but only verified the generalizability in scenarios
with limited heterogeneity. In this work, following the con-
cept of omni-supervised learning [13], we extend to multi-
source semantic segmentation by leveraging full pixel-wise
labeled and unlabeled data from heterogeneous training sets
for efficient ConvNet deployable in countless autonomous
transportation applications. Overall, while we have witnessed
significant progress of unsupervised domain adaptation and
semi-supervised learning in this field [28][29][30], it is
expected that one model can only be trained once yet it
could generalize well in new coming scenarios. Thereby,
our approach is closer to domain generalization, whose key
difference to domain adaptation is that no training samples
are available in the target domain.

C. Semantic Segmentation with Diverse Supervision

Learning semantic segmentation with diverse supervi-
sion has been previously addressed in [14][23]. In [14],
style-transferred, distorted and high-definition images are
blended in training to robustify against blurs and distortions.
In [23], synthetic fish-eye forward-view images and real-
world surround-view images are incorporated by tuning the
hybrid loss functions, which does not fit for learning with
multiple real-world sets as it requires storing private domain-
specific statistics, but our aim is to yield a single model that
supports reliable deployment across domains.

In contrast, due to the proliferation of large real-world
finely-annotated segmentation databases, the relations be-
tween different semantic classes hierarchies have been care-
fully entangled in [11][12], to facilitate end-to-end super-
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Fig. 2. The proposed omni-supervised learning framework. During training, both labeled and unlabeled images from heterogeneous datasets are exploited,
where annotations for unlabeled images are automatically generated by creating ensembles of a teacher model’s predictions on multiple transformations of
the input. During deployment, the yielded student model is not only efficient and robust, but also capable of recognizing diverse sets of semantic classes.

vised training on multiple datasets. In their experiment, it was
highlighted that efficiency-oriented networks are not able to
deal with the complex class hierarchy of the joint dataset. For
this reason, they stated that contemporary efficient ConvNets
are limited in terms of handling a large number of hetero-
geneous semantic classes [12], which are required to fully
understand real-world unconstrained surroundings. However,
our experiments suggest that with the proposed framework,
an efficient segmentation ConvNet is not only capable of
recognizing richer sets of classes, but also empowered with
higher robustness in heterogeneous domains.

III. FRAMEWORK

A. Overview

The diagram of the proposed omni-supervised solution
is depicted in Fig. 2. During the training phase, we create
ensembles for a teacher model’s predictions on the transfor-
mations of the unlabeled images. We exploit both manually
labeled and the extra generated annotations to train the
efficient student network. During deployment, the yielded
robust ConvNet can run in real time on autonomous navi-
gation systems, while delivering diverse sets of recognizable
classes required to fully understand real-world unconstrained
surroundings. In the following sub-sections, we will describe
in detail the training (Section III-B) and deployment (Section
III-C) of efficient ConvNet for robust semantic segmentation
across heterogeneous domains.

B. Training Stage

As there are countless semantic segmentation datasets
available in the vision community, we exploit N large-
scale datasets for training, each of which Di (i = 1∼N )
corresponds to a specific domain, having labeled samples Sil

and unlabeled samples Siu. The annotations for the labeled
samples are Ail, with a semantic class space Ci. To train an
efficient semantic segmentation ConvNet F , the conventional
strategy is to learn the mapping represented by the following
equation:

F

(
Sil

)
=⇒ Ail(Ci)

The efficient segmentation model F , usually separated as
encoder-decoder in a sequential way, can be re-separated
into a feature model Fe that first predicts high-level abstract
features and a pixel-wise classification model Fc that maps
the feature map to the specific semantic space, formally:

F

(
Sil

)
= Fc

[
Fe

(
Sil

)]
=⇒ Ail(Ci)

The purpose of our work is to train a single unified model
that is useful across different domains, but the semantic
spaces in different datasets are incompatible. For ease of
notation, in the case of two domains, C1 6= C2, which
means that the classes are heterogeneous and classes numbers
are usually not equivalent across domains, although they are
partially overlapping with each other. The labels definitions
often encode relationships that positively reinforce the ro-
bustness and generalizability of feature representations when
learning across different domains. In this sense, it is fruitful
to learn with multiple datasets, even their semantic spaces
are with high heterogeneity. Considering the two domains
case, the training target can be modified into:

Fc1

[
Fe

(
S1l

)]
, Fc2

[
Fe

(
S2l

)]
=⇒ A1l(C1), A2l(C2),



where a single efficient model is armed with two classifica-
tion sub-models, which only slightly increases the compu-
tational overhead, but largely enriches recognizable classes
to fully understand real-world surroundings, and the two
domains case can be easily scaled up to multiple datasets.

We further extend the solution to omni-supervised setting
by incorporating unlabeled data for training. Although top-
performance segmentation models are not efficient and light-
weight enough to be deployed in autonomous transportation
systems, their produced semantic maps are highly qualified
and finely grained, and an ensemble of the outputs of a single
model run on multiple transformed copies of an unlabeled
example is known to improve the performance [20], leading
to very accurate results that can be trusted for distillation.
Unlike model distillation that entails re-training different
heavy networks, in this research we follow the concept of
data distillation [13] by using a state-of-the-art architecture
that has been independently trained in each domain, which
is more flexible in the large databases case. The yielded
domain-specific teacher model Fti is responsible for auto-
matically generating annotations for the unlabeled samples:

Aiu(Ci) =

M⊎
j=1

[
Fti

(
Tj

(
Siu

))]
,

where Aiu are generated annotations for unlabeled samples,
which also fall in the semantic space Ci, Tj(j = 1∼M)
denotes a transformation of an input image, and

⊎
represents

the created ensemble for the predictions of the teacher
model through averaging, weighting or probability maps
aggregating. For semantic segmentation, diverse geometric
and textural transformations can be used, such as horizontal
flipping, resizing and color jittering.

Finally, the newly generated annotations of unlabeled
sources are blended with the manually annotated set to train
the efficient ConvNet:

Fci

[
Fe

(
Sil, Siu

)]
=⇒

(
Ail, Aiu

)
(Ci)

C. Deployment Stage

After training, the ConvNet is ready for being applied
in previously unseen domains, while no transformation is
needed in the deployment phase. The resulted learner is a
single model, which maintains the efficiency and simplicity
as in common case of semantic perception systems, but
it possesses several important benefits. First, since it has
been exposed to diverse scenes from multiple datasets, the
generalizability and inherent robustness of the model have
been significantly enhanced. Second, the model is able to
deliver more detectable semantics:

N∑
i=1

Fci

[
Fe

(
Sn

)]
=

N∑
i=1

(
Mi(Ci)

)
,

where for a new sample Sn, N semantic maps will be gener-
ated, each of which Mi corresponds to a semantic space Ci,
supposing a very rich resource of mutually complementary
information for upper-level navigational applications.

IV. EXPERIMENTS AND RESULTS

A. Training Datasets

We perform experiments in the case of learning with
two datasets, but it can be easily scaled up to more image
sources. We employ the challenging Mapillary Vistas [8] and
ADE20K [9], two of the largest and richest scene parsing
datasets in the computer vision community today. We use the
most frequent and navigation-related categories for training,
namely 25 classes of Vistas and 50 classes of ADE20K
to prevent model underfitting and facilitate fair evaluation
across domains. Vistas exhibits an appealing diversity with
images captured in multiple continents and various view-
points, such as from road (vehicles), sidewalk (pedestrians)
and off-road views. It splits into 18000/2000/5000 images
in the train, validation and test subsets. ADE20K com-
prises images from both indoor and outdoor, splitting into
20210/2000/3352 samples for training, validation and testing.
This combination has implications for a wide variety of
transportation applications, such as mobility assistance for
the visually impaired [1]. Since the annotations for the
testing images are not publicly available, we evaluate on the
validation sets with equal amount (2000 images).

While these two datasets provide a rich ontology with
many factors of variations, we also leverage the recently
updated IDD20K dataset [10] and consider the combina-
tion of training with Vistas and IDD20K. IDD20K has
14027/2036/4038 images for training/validation/testing on 26
classes, which covers extremely unstructured environments.
This combination is more oriented to autonomous driving,
allowing us to study the generalization benefits of our
approach for unconstrained surroundings that raise enormous
challenges to the robustness of semantic segmentation.

B. Training Setups

We experiment with our real-time ConvNet ERF-
PSPNet [1][2], which was developed in previous work for
navigation assistance, but the study is conducted in a general
way that is applicable to any deep efficient architecture. The
models are trained under Adam optimization with a weight
decay of 2×10−4 and a starting learning rate of 5×10−4

that decreases exponentially over 200 epochs. Samples are
fed with a batch size of 24 and a resolution of 512×512
as a balance between the two heterogeneous training sets
(Vistas+ADE20K). We only use random horizontal flipping
to transform the inputs, where other data augmentation and
domain adaptation strategies [14] that have been proven
beneficial to generalization capacity are kept out. This is
more realistic as under common cases, the domain knowl-
edge about the deployment environment is unaccessible. We
employ the standard mean Intersection-over-Union (mIoU)
as the evaluation metric.

We use the state-of-the-art PSPNet50 [20] as the teacher
model, which has 67.1% mIoU on Vistas and 48.7% on
ADE20K validation sets. Our omni-supervised learning set-
ting is based on creating annotations for the 5000 and 3352
unlabeled images from the test subsets. We use horizontal



TABLE I
COMPARISON OF SEMANTIC SEGMENTATION ACCURACY MEASURED IN MIOU ACROSS HETEROGENEOUS DOMAINS.

TRAINING RESOLUTION: 512×512.

Network Trained Domains (Validation Sets) Unseen Domains (for Deployment)
Mapillary Vistas ADE20K PASS Gardens Point

ERF-PSPNet (Vistas-trained) 58.9% NA 27.4% 68.4%
ERF-PSPNet (ADE20K-trained) NA 38.8% 17.7% 71.7%

ERF-PSPNet (jointly-trained) 54.1% 44.2% 32.6% 76.6%
Omni-Supervised ERF-PSPNet 53.4% 44.1% 37.8% 80.0%

mirroring, 2× and 0.5× scaling for each unlabeled image,
resulting in 4 transformed duplicates including the origi-
nal one. We ensemble the teacher model’s predictions by
aggregating the probability maps for these copies to form
as the annotation of the unlabeled set for data distillation.
When training on multiple datasets, each iteration contains
a forward pass and a backward pass per dataset using cross-
entropy loss functions.

C. Baselines

The training results are shown in Table I, where our ERF-
PSPNet achieves 58.9% and 38.8% on the validation sets
when trained on Mapillary Vistas and ADE20K indepen-
dently. For the IDD20K dataset and the Vistas+IDD20K
cases, we train on 1024×512 as they both support high-
definition inputs while other training implementation details
are the same as the Vistas+ADE20K combination. Our ERF-
PSPNet achieves 63.2%/64.2% on the IDD20K validation
dataset without/with Vistas-supervision, both surpassing the
results of state-of-the-art efficient networks such as DR-
Net [19] and ERFNet [21], as displayed in Table II. Com-
pared with the Universal Semi-supervised Semantic Segmen-
tation (USSS) approach [27] that incorporates part of images
from both IDD and Cityscapes for training, our score is
also higher as we are able to leverage the full IDD20K-
based supervision. However, in spite of the decent mIoU
numbers on the validation sets, there is a large accuracy
downgrade when a single-source trained model is taken to
previously unseen domains such as the panoramic domain
and the multimodal walking domain as it can be seen in
Table I, Table III and Table IV. The main aim of our
experiments is to answer whether the proposal benefits the
generalizability. The short answer is yes as shown in the
Tables. In the following subsections, we will examine in
detail the generalization gains in various unseen domains.

TABLE II
ACCURACY ANALYSIS ON IDD20K DATASET [10].

TRAINING RESOLUTION: 1024×512.

Network IDD20K Vistas
DRNet (ResNet18) [19] 52.2% NA
USSS (ResNet18) [27] 27.5% NA
USSS (ResNet50) [27] 55.1% NA

ERFNet [21] 55.4% NA
Our ERF-PSPNet (Vistas-trained) NA 61.6%
Our ERF-PSPNet (IDD-trained) 63.2% NA

Our ERF-PSPNet (Jointly-trained) 64.2% 63.0%

D. Panoramic Domain

For panoramic images, semantic segmentation is required
to cover the field of view as wide as 360◦, which has impor-
tant implications as comprehensive perception of the entire
surrounding is necessary for IV applications. In this work, we
use the Panoramic Annular Semantic Segmentation (PASS)
dataset [2][14] which comprises 400 images for testing with
pixel-accurate annotations on 6 navigation-critical classes:
Car, Road, Sidewalk, Crosswalk, Curb and Person.

As shown in Table I and Table III, the ERF-PSPNet trained
on a single dataset performs poorly in the panoramic domain
as the mIoU numbers (27.4% and 17.7%) are below 30.0%.
When performing training jointly with Vistas and ADE20K,
the accuracy increases to 32.6%, demonstrating the benefit
of diverse supervision from the two heterogeneous datasets.
This is because when trained with heterogeneous datasets,
the network learns to focus on relevant features for both
tasks and thus gains robustness. The training decreases the
accuracy on Vistas compared to the single-source Vistas-
training, which proves that the joint-training highly prevents
overfitting, as the accuracies in multiple unseen domains
significantly improve. The joint-training also increases the
accuracy on ADE20K because it contains many street-scene
images that benefit from Vistas-based supervision.

The omni-supervised learning further improves the ac-
curacy, reaching 37.8% on PASS, verifying the benefit of
variety implicated in the unlabeled data. This score surpasses
most of the previous attempts on this dataset including
ERFNet, PSPNet18, ERF-APSPNet [14] and SwiftNet [22].
While these networks are trained with aggressive data aug-
mentation and style transfer-based domain adaptation strate-
gies [2], our approach is more realistic as generally the
style of the target domain is unknown. This result also
demonstrates that omni-supervised learning is beneficial for
the challenging omni-directional semantic segmentation task.

PASS dataset is a highly unconstrained domain as in
panoramic imagery, traffic participants with diverse orien-
tations can be simultaneously observed (see examples in
Fig. 3). In addition, sometimes there are many close partic-
ipants present in the image from PASS dataset. For these
reasons, our solution combining Vistas and IDD20K for
training significantly improves the performance as IDD20K
embraces highly unstructured roads while Vistas offers the
high diversity. While IDD20K-trained and Vistas-trained
models yield 20.1% and 27.4% on PASS respectively, the
joint-training boosts the accuracy to 41.0%, outperforming
all previous networks attempted on this dataset [2]. This



TABLE III
ACCURACY ANALYSIS ON PANORAMIC ANNULAR SEMANTIC SEGMENTATION (PASS) DATASET [2][14].

ALL NETWORKS ARE TESTED BY VIEWING THE PANORAMA AS A SINGLE SEGMENT EXCEPT THOSE WITH CROSS-SEGMENT PADDING.
Network Car Road Sidewalk Crosswalk Curb Person mIoU

ERFNet [21] 70.0% 57.3% 25.4% 22.9% 15.8% 15.3% 34.3%
PSPNet (ResNet18) [20] 64.1% 67.7% 31.2% 15.1% 17.5% 12.8% 34.8%

ERF-APSPNet [14] 72.3% 71.4% 32.6% 5.6% 16.3% 14.5% 35.5%
SwiftNet [22] 67.5% 70.0% 30.0% 21.4% 21.9% 13.7% 37.4%
SwaftNet [2] 76.4% 64.1% 33.8% 9.6% 26.9% 18.5% 38.2%

ERF-PSPNet (Vistas) 57.2% 55.2% 17.9% 13.5% 11.7% 8.8% 27.4%
ERF-PSPNet (ADE20K) 36.9% 50.7% 14.9% 0.0% 0.0% 3.5% 17.7%

ERF-PSPNet (ADE20K+Vistas) 64.8% 68.7% 28.6% 4.6% 17.3% 11.5% 32.6%
Omni-Supervised 68.4% 74.0% 39.6% 11.6% 18.7% 14.8% 37.8%

Omni-Supervised (with cross-segment padding) 88.0% 79.5% 41.7% 57.9% 32.7% 52.4% 58.7%
ERF-PSPNet (IDD20K) 53.4% 51.2% 3.2% 0.0% 2.3% 10.6% 20.1%

ERF-PSPNet (IDD20K+Vistas) 75.5% 70.9% 32.5% 13.0% 20.6% 33.5% 41.0%
ERF-PSPNet (IDD20K+Vistas, with cross-segment padding) 91.0% 82.5% 56.8% 56.9% 38.2% 74.1% 66.6%

(a) Raw (b) Unfolded panorama (c) Prediction in Vistas space (d) Prediction in ADE20K space (e) Prediction in IDD20K space
Fig. 3. Qualitative examples in the domain of panoramic annular semantic segmentation: (a) Raw panoramic images from the PASS dataset [2][14], (b)
Unfolded panoramas, (c) Predictions of our ERF-PSPNet in the semantic spaces of Mapillary Vistas, (d) ADE20K and (e) IDD20K.

indicates that a ConvNet that needs to work in challenging
unseen domains also needs to see challenging examples
like cluttered scenes during training while data diversity
should always be ensured. Note that all these results are
obtained by viewing the panorama as a single input segment.
In [2][14], it was shown that for panorama segmentation,
partitioning the input into several segments and predicting
with cross-segment padding are critical. In this work, our best
results can also be significantly further improved by using
the operations as highlighted in Table III. However, because
there is not a teacher model that is significantly better than
our jointly-trained efficient ConvNet on IDD20K dataset, we
leave the omni-supervision for future work to particularly
address omni-directional semantic segmentation.

Fig. 3 displays representative predictions of our approach
in diverse semantic spaces. On the one hand, clear and
robust segmentation in the unseen panoramic imagery can
be observed. Besides, in this demonstration, it is shown that

while only a single model is yielded, it delivers rich sets of
visual classes and they are complementary to each other. For
example, in the Vistas space, crosswalks and curbs can be
predicted that are absent in IDD20K space (see the 3rd to 6th
rows), but IDD20-space results can help to foresee safety-
critical classes like auto-rickshaws whose behavior is highly
unpredictable, as shown in the 4th/6th rows (denoted with
yellow). Additionally, with ADE20K-space predictions, even
indoor environments can be covered beyond IV’s perception.

E. Multimodal Walking Domains
Detecting traversable area ahead of an intelligent robotic

agent using an on-board camera is a key capability, which can
benefit from pixel-wise semantic segmentation [1][7]. We
use the Gardens Point dataset [15] to study the robustness in
multimodal imagery. Gardens Point dataset has 600 images,
of which 400 were captured at day and 200 were collected at
night along nearly the same walking route across indoor and
outdoor environments. The nighttime images were converted



(a) Day input (b) Annotation (c) ADE-trained (d) Omni-trained (e) Night input (f) Annotation (g) ADE-trained (h) Omni-trained
Fig. 4. Qualitative examples of traversable area segmentation across indoor and outdoor: (a) Day and (e) Night images from the Gardens Point dataset [15],
(b)(f) Manually annotated ground truth, (c)(g) Predictions of ADE20K-trained and (d)(h) Omni-supervised ERF-PSPNet.

to grayscale with contrast enhanced as shown in Fig. 4. In
this work, we manually create pixel-accurate annotations of
traverasable areas for all the 600 images.

TABLE IV
ACCURACY ANALYSIS ON GARDENS POINT DATASET [15].

Network Day Night All
ERF-PSPNet (Vistas) 75.2% 54.4% 68.4%

ERF-PSPNet (ADE20K) 78.8% 58.2% 71.7%
ERF-PSPNet (Jointly) 82.7% 66.7% 76.6%

Omni-Supervised 83.7% 73.1% 80.0%

Table IV shows the quantitative results of our omni-
supervised solution contrasted with independently/jointly-
trained methods after merging semantic traversable classes
to facilitate comparison. It can be seen that ADE20K-
based model is better than the Vistas-based model because
it has seen both indoor and outdoor scenes in the train-
ing phase. The jointly-trained model significantly improves
the scores as it learns more illumination-invariant features,
becoming more accurate across RGB/grayscale modalities,
indoor/outdoor and day/night scenarios. The omni-supervised
proposal further improves the mIoU greatly, especially at
night, reaching an overall accuracy of 80.0%. Fig. 4 also
demonstrates that our omni-supervised approach consistently
leads to more complete and robust segmentation across
indoor and outdoor at both daytime and nighttime, beneficial
for real-world navigation assistance systems.

F. Nighttime Driving Domains

IV applications can hardly escape from non-ideal or even
adverse weather and illumination conditions. Since we have
realized that our approach can lead to better performance
at night, it is worthwhile to look into the segmentation for
nighttime road-driving images. In this work, we use the
Nighttime Driving Dataset [16] (50 testing images) and BDD
Database [17] (32 nighttime images for validation). We com-
pare qualitatively in each dataset both single-source Vistas-
trained model and our omni-supervised model as it is not able
to compare the numerical results due to the different classes
hierarchies, but our approach already yields comprehensive
semantics in multiple spaces. To analyze the robustness
gains, as shown in Fig. 5, the background classes are better
classified, the roadways are more completely/consistently

segmented, while the dynamic participants are finely detected
(see the trains). In all conditions, our proposal clearly ex-
hibits considerable generalization benefits, enabling efficient
ConvNets like ERF-PSPNet to work reliably even at night
without any domain adaptation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a multi-source omni-
supervised learning framework to increase the number of
recognizable visual classes and robustness of efficient ar-
chitectures ready to be deployed in various domains. While
previous researches that relied on regulating the class hierar-
chies also stated that efficient ConvNets cannot well handle
the complexity, our approach enables them to deliver rich sets
of detectable semantics, meanwhile improves their reliability
in heterogeneous unseen domains. The high generalization
capacity is empowered by multi-source data and data dis-
tillation by leveraging both labeled and unlabeled images,
which expose the efficient ConvNet to diverse scenes.

The experimental results show that our solution with a
single unified model ERF-PSPNet outperforms state-of-the-
art efficient networks on IDD20K and PASS datasets, both
of which reflect highly unconstrained road surroundings. We
further investigate the performance in multimodal walking
and nighttime driving domains, demonstrating consistent and
significant robustness benefits across indoor and outdoor,
even in adverse conditions such as the nighttime.

We have the intention to incorporate non-local opera-
tion and multi-domain adversarial learning [31] to further
enhance the generalizability in the presence of unforeseen
scenery. Particularly, we aim to optimize the omni-supervised
solution for omni-directional semantic segmentation by im-
porting unlabeled panoramas. In addition, while we consider
the multi-space detection results are already very useful for
upper-level applications, it remains future work to fuse the
recognizable semantics in a single segmentation map.
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