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Abstract. Despite a number of advances in the accessibility of STEM
education, there is a lack of advanced tool support for authors and edu-
cators seeking to make corresponding documents accessible. We propose
an interactive labeling method that combines an AI with user input to
create accessible chemical structural formulas and incrementally improve
the model. The model is a deep learning method based on a convolutional
neural network and a transformer-based encoder-decoder. We implement
this in a tool that enables graphical labeling of structural formulas and
supports the user by performing a similarity search to suggest matches.
Our approach aims to improve both the efficiency and effectiveness of
labeling chemical structural formulas for accessibility purposes.
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1 Introduction

Making learning materials accessible to visually impaired people is of utmost
importance, especially in schools and higher education. The lack of accessible
content was cited as one of the reasons why few blind students choose STEM
subjects [18]. Learning chemistry, e.g., seems almost impossible, without its
molecules visualized in structural formulas [7]. Thus, making such structural
formulas accessible demands priority for STEM education. The issue is exacer-
bated when neither the authors are familiar with accessibility requirements, nor
those who seek accessibility have the required STEM background.

Recently, in the research field of automatic image description generation
promising deep-learning-based approaches for the recognition of mathematical
formulas have been proposed [2]. However, the recognition of chemical structural
formulas is more challenging. Often, it is based on low-level image processing ap-
proaches that require copious amounts of fine-tuning [9,11,16]. Further, none of
the previous approaches integrate well into the established semi-automated ap-
proach in which STEM content is usually being made accessible. Currently either
content authors themselves, or third parties like educators, try to make docu-
ments as a whole accessible. Thereby fully autonomous approaches while solving
the issue of the process being time-consuming, do not tackle the challenge of
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quality control. Neither fully automated approaches, due to lack of oversight,
nor fully manual approaches, because of the error-proneness of the linearized
label input, satisfy this. As such, there is a lack of research on how to facilitate
interactive labeling of structural formulas efficiently and effectively.

In this paper we propose such an interactive approach and show its feasibility
with a prototype. Firstly, we generated a dataset of images of structural formulas
and their linear representations. We then trained a deep learning model using
this dataset. To label new structural formulas, the model prediction is being fed
into an interactive labeling interface that supports the user in either deciding
that the prediction was accurate and thus accepting it, or correcting the lin-
ear representation of the input image. With this user input the deep learning
model can be further improved, while also forming the basis to generate suitable
alternative text representations for structural formulas that can be read and fur-
ther used by blind chemists. We thus demonstrate the feasibility of interactive
labeling approaches for structured image contents in document accessibility.

Colloquial name
Acetylcarnitine, Acetyl-L-carnitine, ALCAR, ALC

Sum formula
C9H17NO4

IUPAC name
(R)-3-Acetyloxy-4-trimethylammonio-butanoate

SMILES
[O-]C(=O)C[C@@H](OC(=O)C)C[N+](C)(C)C

InChI
InChI=1S/C9H17NO4/c1-7(11)14-8(5-9(12)13)6-
10(2,3)4/h8H,5-6H2,1-4H3/t8-/m1/s1

Fig. 1: Acetylcarnitine as visualized in its structural formula (https://en.wikipedia.
org/wiki/Acetylcarnitine and different text based (linear) representations of it.

2 Related Work

2.1 Accessibility of Structural Formulas

Research focusing on the accessibility of chemical structural formulas has un-
dertaken several avenues. Via image segmentation and subsequent rule-based
recognition, researchers have managed to make a first step towards automatic
extraction of linear representations from an image [14]. Their approach initially
translates the bitmap image into geometrical forms in a vector graphic. Such
vector graphics are more easily accessible for the blind, especially with guid-
ance and further labeling. However, slight errors during the translation of the
image into geometric components make a rule-based detection of the underly-
ing molecule all but unfeasible, as the resulting vector representations could be
chemically impossible. Other approaches such as [11] build upon similar rules
to extract geometric components. Practical applications, e.g. for teaching blind
students chemistry in secondary education [18], underline how important not
only vector representations, but also semantic enrichment of them are. However,
such approaches require a certain domain expertise of the labeler.

Recent literature has been focusing largely on a single linearized represen-
tation called SMILES. This is a clear disadvantage because different standards

https://en.wikipedia.org/wiki/Acetylcarnitine
https://en.wikipedia.org/wiki/Acetylcarnitine


Accessible Chemical Structural Formula Labeling 3

may be helpful to different readers of the document. There is a variety of textual
representation formats for molecule structures including SMILES, InChI, collo-
quial name, IUPAC name, and sum formula [6], as illustrated in Figure 1. Among
those standards, SMILES [19] and InChI [3] are compact, unique, and able to
represent the entire molecule including its structure. SMILES [19] was designed
to be read and written by humans, and it is therefore relatively straightforward
to interpret, provided that the user knows a few basic principles of the format
and thus usable for the people with visual impairments. InChI does not fulfill
the human readability requirement (c.f. Figure 1). Finally, other representations
such as aforementioned sum formulas, names or browseable vector graphics can
be generated from this. This allows for a range of options regarding the output,
such as generating a list of representations in the alt-text of a PDF, or using the
multiple-rendition feature of EPUB3 to provide all alternatives simultaneously
and selectable by user-choice [12]. In an educational setting, further requirements
like exam fairness come to mind. Hereby giving blind students the IUPAC name
would provide them with an unfair advantage as compared to their seeing peers,
as such a name could already contain partial solutions to exam questions. Hereby,
the person making the exam document accessible must make choices regarding
the availability of certain representations.

2.2 Learning-based Detection and Labeling of Structural Formulas

The task of identifying molecular structure images in documents is challenging
due to various reasons, especially because of complexity of molecule structures
and the diversity of image formats and styles. Conventionally, low-level image
processing techniques (scanning, vectorization, etc.) are used in conjunction with
high-level rules to organize components into their respective structures [9,11,16].
Each stage must be fine-tuned independently as well as in relation to the other
parts, leading to a time-consuming process of incorporating new elements requir-
ing high amounts of human intervention. On the other hand, deep learning ap-
proaches using sequence-to-sequence models involve training a complex learning
system represented by a single artificial neural network that embodies a complete
target system. This system does not include explicit intermediate stages usually
present in the traditional pipeline approach. Recently, deep learning has been
applied to a variety of problems ranging from image-to-text and text-to-text
tasks, many of which have demonstrated strong performances with sequence-
to-sequence models [17]. Therefore, it is intuitive to apply sequence-to-sequence
prediction models like transformers to this problem given the suitability of the
image inputs and the sequential outputs. [15] presented deep learning solutions
to predict SMILES encodings from bitmaps. They showed that deep learning
can learn to predict images of molecules from literature at reasonably high ac-
curacy. [10] used transformer models to predict SMILES encodings of chemical
structure depictions with about 90% accuracy.

Outside of accessibility research, the domain of chemistry and specifically
cheminformatics, have developed graphical labeling and search tools. A promi-
nent example of such a tool is kekule.js [4]. Among other features it provides a
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graphical user interface supporting the entry of structural formulas. As further
aids for chemists there exist a series of databases of already discovered molecules,
searchable by e.g., SMILES, InChI, IUPAC or name. Existing work has already
incorporated graphical editors, foremost kekule.js, as input for such databases,
e.g., [13]. Combined with a similarity search this allows for the retrieval of either
structurally related molecules or a certain haziness in the users search input.

3 Interactive Labeling of Structural Formulas

Our method and tool are designed to be used either in batch processing of
a large set of pre-segmented images of structural formulas or as a component
of a document accessibility platform that is being invoked when there is an
image containing such formulas in a document. Thereby, we consider our work
as complimentary to existing research, e.g. [14], that focus largely on automated
extraction and means of comprehensibility for blind users. The encoder-decoder
concept was first designed to handle machine translation tasks in which both
the input and output modalities are textual sequences. However, this concept
is also known to be highly flexible such that the infrastructure of the encoder
or decoder can be changed according to the required modality. In our specific
context, it is intuitive to use a convolutional architecture to accommodate the
imagery input, and a sequential auto-regressive model to handle the sequential
generation nature of the decoder. Our overall architecture is a widely-used image
captioning model [20], using a CNN-based encoder for feature extraction and an
attention-augmented RNN decoder for generating outputs, namely SMILES and
InChI in a multi-task learning setup.

Our work investigated different architectures, from simple to sophisticated,
in order to show a progressive observation over the effectiveness of these ar-
chitectures. We acquired a training dataset of about 4 million images from the
PubChem database with matching SMILES labels of length less than 100. In our
encoder-decoder architecture, for the encoder, we leverage 8 different Efficient-
Net variations B0, B3, and B7 with adding a transformer encoder layer [17] as
well as ResNet152 for feature extraction. From a 3×256×256 input image, we ex-
tract the last convolutional feature of a CNN-based encoder, which downsamples
the image yet adds extra channels, as a 1024×20×20 input for the decoder. From
the point of view of sequence generation with attention, this can be viewed as an
input with 400 memory states for querying in attention. On the other hand, the
simplest solution for the decoder is an auto-regressive (without bi-directional)
LSTM recurrent network that processes the text sequences in characters while us-
ing the attention mechanism [1] to align the generated characters with the input
states in the encoder. In addition to such Convolution-Recurrent architecture, we
take advantage of the power of Transformers to increase the modeling capacity
and thus enhance learning performance in the next step. Transformer [17] orig-
inally replaces recurrence or convolution with self-attention and is theoretically
able to represent both local and global connectivities, which CNN and RNN
excel at, respectively. This model is also highly parallelizable and can utilize
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the computational power of devices such as GPUs more efficiently than other
networks. Using Transformers leads to adding self-attention layers on top of the
convolutional features of the encoder and replacing the LSTM decoders with
self-attentional decoders.

Fig. 2: User interface of our tool

Figure 2 shows the user interface (UI) of the interactive labeling tool. We
have designed this interface with three main components to effectively support
the creation of accessible chemical structural formulas. The focus is to automate
the process as much as the state-of-the-art allows, while simultaneously using
the input to collect more training data in order to further improve the model. We
hereby follow established approaches concerning the development of interactive
labeling systems [8]. Situated in the top left corner of the UI, component I
depicts the original input image for reference, as well as the SMILES string that
our model predicted. In component II, on the top right side, we integrated
the established kekule.js molecule editor. Upon invocation of the interface, the
editor is pre-loaded with an automatically generated graphical representation of
the SMILES string the model predicted. The user can now compare this repre-
sentation with the original input image to identify discrepancies - or to accept
the current rendering in the editor. Furthermore, errors can be corrected via the
graphical editor. This can be either small changes to the existing structure or
a completely new one may be entered. Finally, component III shows similar
molecules and is situated along the bottom. Specifically, it shows the structural
formulas, names, IUPAC and SMILES representations of four molecules retrieved
from the PubChem3 database via a similarity search [6]. With this feature we
provide advanced support for the user beyond the graphical editor. It is reason-
able to assume that the molecules shown in literature are real existing molecules
which are recorded in the PubChem database. This database is not only search-
able via SMILES strings, but also allows for a similarity matching of structurally

3 https://pubchemdocs.ncbi.nlm.nih.gov

https://pubchemdocs.ncbi.nlm.nih.gov
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kindred molecules. This search is initialized with the model prediction, but up-
dates live as the user makes changes in the graphical editor. The user has the
option to open any suggestion in the editor to make changes, or to accept it as
is. Our labeling interface potentially allows for incorporating users without any
chemical domain knowledge in the process of making PDFs accessible. Specif-
ically, no knowledge about the output format of SMILES, is required, as the
input image can be matched by visual comparison only. For a well performing
model and similarity search engine, even the amount of manual graphical input
is limited to edge cases, as predictions could be correct out of the box or the
matching molecule may be contained in the suggestions in component III.

4 Evaluation

The two best performing model configurations were EfficientNet B2 and B7,
each with 2 transformer encoder layers, respectively. Validation set accuracies
for exact identifications are similar among them at 98.22% for B2+2 and 98.87%
for B7+2. However, on yet unseen test data the results differ between them. To
evaluate this, we use the mean Tanimoto similarity (T ), as well as mean Leven-
shtein distances (L). The former refers to an established measure in chemistry,
comparing molecule similarity along functional groups and the molecules effects
in chemical reactions. Also known as edit distance, the latter is a general-purpose
string distance measure, better representing the amount of changes required in
the interactive labeling procedure. Hereby we report values of TB2+2 = 70.50%
and LB2+2 = 81.69%, as well as TB7+2 = 80.86% and LB7+2 = 82.66%.

Comparing our results to other state-of-the-art solutions also employing deep-
learning methods, we find that our performance is competitive. We achieve
slightly better results than the work of [5] which reported a validation accu-
racy (on a molecule level) of 92.80% with our model version B7+2 at 98.87%.
Furthermore we do so with significantly less training data of 2 versus 10 mil-
lion images. Using even more data, at 35 million images, [10] obtain Tanimoto
similarities of 96.47% far surpassing our values. They do however, limit the op-
tions for input severely, by allowing only the 12 most common elements, limiting
the number of bonds and the weight, disallowing stereochemistry, counterions,
charged groups and isotopes, and limiting the SMILES string to a length of 40.
As compared to that, we pose just a single restriction of SMILES lengths less
than 100. Following suggestions from other researchers, we could improve upon
our work by adding image augmentations like blur and noise [10] and extending
the size of our dataset, especially including low-quality real-world data [5].

A currently still missing subsequent user evaluation of our tool may focus on
different types of users. Firstly, to obtain a baseline comparison to the current
approach to making chemical formulas accessible, an evaluation should involve
educators to blind or vision impaired STEM students. With this target audience
performance and user-related benefits against aforementioned baseline can be
investigated. Further, it allows for studying implications of different represen-
tational formats on the users of the output of our system (i.e. blind students
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and chemists). Students may have different needs from seasoned chemists, as
they may not need an efficient input on what information is contained in the
image, e.g. as an IUPAC name, but may need to first understand how such a
molecule is constructed, e.g. as a SMILES string or a vector graphic. Comple-
mentary, an evaluation may also involve users not previously involved in working
on document accessibility. Hereby varying levels of chemical expertise could be
represented in a stratified sample. On the top end, chemists with experience in
using SMILES strings could typify power users that may not even profit from
graphical entry as they proficiency with writing such strings may be too high.
The other end of the spectrum is represented by chemical novices, knowing little
more than the fact that the graphically labeled molecule should look the same
as in the input image. Such an evaluation could provide input into the required
domain expertise required to effectively contribute to making STEM documents
accessible. If our tool is indeed capable in lowering the entry barrier for sup-
porting the costly and labor-intensive process of labeling [8], it may contribute
significantly to the goal of making knowledge accessible for all.

5 Conclusions

In this paper we have introduced a new interactive labeling method and tool
to support making chemical structural formulas accessible. Thereby, we lever-
age the respective strengths of humans and computers. Creating accurate textual
representations such as SMILES is achievable with state-of-the-art deep learning
technology. However, precision cannot be guaranteed. Our interactive labeling
approach involves a human, who is strongly supported by simultaneously ac-
celerating input and checking its credibility. Thereby a first suggestion is being
made by our deep learning model, while the subsequent correction process is
supported by similarity matching. Graphical, as opposed to text-based, label
input enables novices to contribute. With our approach, we do not only ensure
precision, but also support continuous model improvement. There is still a lot
of potential for optimization in the automated recognition of structural formu-
las, but our proof of concept has demonstrated its feasibility. The deep learning
model is considered to be able to further improve upon a multi-task learning
strategy in the future. Data acquired from using the tool will support here.

Ultimately, our next steps lie within improving our classifier, evaluating our
interactive labeling tool with users, and later integrating it into broader plat-
forms to make documents with STEM content accessible in a scalable way.
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