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Abstract. Navigation assistance has made significant progress in the
last years with the emergence of different approaches, allowing them
to perceive their surroundings and localize themselves accurately, which
greatly improves the mobility of visually impaired people. However, most
of the existing systems address each of the tasks individually, which in-
creases the response time that is clearly not beneficial for a safety-critical
application. In this paper, we aim to cover scene perception and visual
localization needed by navigation assistance in a unified way. We present
a semantic visual localization system to help visually impaired people
to be aware of their locations and surroundings in indoor environments.
Our method relies on 3D reconstruction and semantic segmentation of
RGB-D images captured from a pair of wearable smart glasses. We can
inform the user of an upcoming object via audio feedback so that the
user can be prepared to avoid obstacles or interact with the object, which
means that visually impaired people can be more active in an unfamiliar
environment.

Keywords: Visual Localization · 3D Reconstruction · Semantic Seg-
mentation · Navigation Assistance for the Visually Impaired.

1 Introduction

With the help of mobility aids such as a global navigation satellite system
(GNSS) device, it is possible for visually impaired people to travel more in-
dependently. Although such mobility aids can navigate visually impaired people
to the entrance of the right target building, the unknown indoor environment
remains a labyrinth for them [3]. The situation indoors is a more demanding
challenge than outdoors, as each room can have a different layout and indoor
navigation systems are not on the market. For visually impaired people it is
difficult to find their own way to the desired destination without the company
of a personal guide. In addition, the arrangement of movables can change when
returning to a familiar place, which can be dangerous for people with visual
impairments if they rely on their memory for navigation.
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On the other hand, vision-based navigation aids have made remarkable progress
in recent years [5, 8, 20], making it possible to perceive the environment and lo-
calize oneself effectively, which significantly improves the mobility of visually
impaired people. However, most of these tools work outdoors and address each
task separately, which increases the response time that is clearly not advanta-
geous for safety-critical assisted navigation. In these scenarios, a system, which
can capture and convey both positional and cognitive messages, offers significant
support to visually impaired people.

In this paper, we aim to cover scene perception and localization desired by
navigation assistance in a unified manner. We present a semantic visual local-
ization system for the visually impaired under indoor circumstances, in order
to help them to acquire the overall information about their surroundings and
relative position of objects nearby. The system reconstructs a 3D copy of the
user’s surroundings in real time from a stereo camera. Meanwhile, it associates
semantic concepts of nearby objects with corresponding entities in the 3D re-
construction by using pixel-wise semantic segmentation. As the system maps the
real world into a digital one, we can estimate the user’s location according to
the camera position in the 3D map. Finally, through audio feedback, semantic
concepts combined with their position can give the user intuitive awareness and
understanding of their surroundings (e.g., the system can tell the user what kind
of obstacles are in front of him or tell him where a door is).

2 Related Work

In recent years, the robotics community has well explored Simultaneous Lo-
calization and Mapping (SLAM) [2] problems. Visual-SLAM research still has
a substantial potential thanks to astonishing achievements by computer vision
and computer graphic techniques. ORBSLAM [9] exhibits a system for monocu-
lar, stereo, and RGB-D cameras, including loop closing, relocalization, and map
reuse. ElasticFusion [18] is capable of estimating a dense 3D map of an indoor
environment. Kimera [14] enables mesh reconstruction and semantic labeling in
3D. However, there is still a huge gap between localization and assistance, as
visually impaired people always rely on the surrounding semantic information
to localize themselves, which is not necessarily mapped to the corresponding
positioning results from visual SLAM algorithms.

Deep neural networks have achieved excellent results in semantic segmenta-
tion. SegNet [1] was presented as an encoder-decoder architecture for pixel-wise
semantic segmentation. ENet [10], Fast-SCNN [11] and ERFNet [12, 13] were
proposed as efficient architectures for fast inference. ACNet [4] introduced an
attention complementary module to exploit cross-modal features, which is also
used in RFNet [17] that facilitates real-time RGB-D segmentation. In this work,
we use RFNet due to its real-time performance and fusion capability. Despite
these progress, in previous wearable systems, semantic segmentation has only
been used for unified scene perception [20], leaving rich opportunities open to
assist localization.
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In the field of assisted navigation with computer vision methods for visu-
ally impaired people, Lin et al. [5] proposed an outdoor localization system
for visually impaired pedestrians. Hu et al. [3] presented an indoor positioning
framework based on panoramic visual odometry, which attained robust local-
ization performance due to the large field of view. Lin et al. [6] put forward a
data-driven approach to predict safe and reliable navigable instructions by using
RGB-D data and the established semantic map. Liu et al. [7] built a solution
for indoor topological localization with semantic information based on object
detection, which is the closest to our work. Our work differs from these works as
we aim to use the dense semantic maps produced by an RGB-D segmentation
network to improve localization, since the pixel-wise results, which are extremely
informative during orientation and navigation, not only allow the user to recog-
nize nearby objects, but also facilitate the detection of walkable areas.
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Fig. 1. An overview of the proposed system. The smart glasses provide RGB images to
OpenVSLAM to establish localization and mapping. Meanwhile, the RFNet generates
semantic labels from the RGB and depth images. We select the target positions with
their semantic labels to produce audio prompts for the user.

3 System Description

In this section, we describe the hardware and software components as well as the
interaction of the components of the entire system. Figure 1 gives an overview
of the proposed system.

3.1 Hardware Components

The system consists of a RealSense camera R200, a pair of bone-conduction
earphones, as well as an NVIDIA Jetson AGX Xavier processor. The camera and
earphones are integrated into a pair of wearable smart glasses, as it is shown in
Fig. 2. We perform the semantic segmentation and localization on the embedded
processor Xavier in real time.
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Fig. 2. Devices and the real-time results of our system. The left image shows the user
wearing the devices. The blue box in left image indicates the smart glasses while the
orange box indicates the Xavier processor. The windows on the screen exhibit (1) the
depth image, (2) the input frame for the SLAM system, (3) the semantic segmentation
result and (4) the 3D map.

3.2 Software Components

Our approach is based on the OpenVSLAM [16] framework, which provides
our system with robust mapping and localization in real time. We feed the
OpenVSLAM with color images captured by the RGB camera. The tracking
module estimates the camera pose of the current frame. We assume that the area
covered by the camera reveals an interesting direction for a visually impaired
user. We utilize the 3D landmarks generated by the mapping module in the
current frame to calculate the distance between the user and the objects. In
this scenario, the camera center is considered as the location of the user. We
choose the area within a distance of half a meter to one meter as the target
area. In parallel, our system takes the color images and the depth images to
the image segmentation component of our system. Subsequently, we acquire the
semantic labels of the target area from the segmentation results. Normally, our
target area covers several semantic labels. It is trivial to determine the final label
by choosing the most frequent label of this area. The semantic segmentation
approach is derived from the RFNet [17], a real-time fusion network. It provides
the system with fast inference and high accuracy of semantic segmentation by
fusing RGB-D information from the camera, as shown in Fig. 3.

Training of the Computer Vision Model. We trained the RFNet with the
SUN RGB-D indoor scene understanding benchmark suit [15]. SUN RGB-D con-
tains 10355 RGB-D images with dense indoor semantic labels of 37 classes. We
resized all images to 480× 640 and applied data augmentation during the train-
ing. The pixel classification accuracy is 15.5% on 2000 test images. Fig. 3 shows
some results of RFNet on the SUN RGB-D dataset. We use Intel RealSense
R200 as the input device for both the SLAM part and segmentation part. The
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stream resolution is 480×640 with a frame rate of 60 fps. As shown in Table 1,
We achieve approximately 69.3ms/frame inference speed of the semantic seg-
mentation and 59.9ms/frame tracking speed of the SLAM system, which is fast
for navigation assistance on the portable embedded processor. Fig. 4 shows the
mapping results in small rooms. When the system detects objects near the user,
the system generates a audio feedback with semantic information every 1 second.

3.3 Interaction of the components

Figure 1 shows the general interaction of the components of our proposed system.
In order to support reliable obstacle avoidance, we keep searching for the nearest
landmarks to the camera center in the map. When the distance is reaching a
certain interval (i.e., between 0.5m and 1m), the user is informed of the semantic
label of the target area. We embed this information in a sentence (e.g., “A table
is in front of you”) and send it to a text-to-speech module to generate audio
feedback for the user.

Fig. 3. Semantic segmentation results on SUN RGB-D dataset. From top to bottom:
semantic maps, depth maps and RGB images.

4 Pilot Study

Our system aims to enable navigation in unstructured indoor environments.
Thus, the user must be made aware of impassable areas in their path, as well
as possible obstacles. Hence, we focused our evaluation on the ability to detect
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Table 1. System specifications and speed analysis.

Camera resolution Camera fps Inference speed Mean tracking time

480×640 60fps 69.3ms/frame 59.9ms/frame

Fig. 4. Mapping results using the wearable glasses. The square trajectory on the left
image indicates the result of walking around a table. The right image shows the walking
trajectory along a corridor.

obstacles and objects blocking the path. However, we also evaluated our pro-
totype through a user study where a blindfolded participant walked around a
table with chairs and other small obstacles along the path. The goal of the task
was to see if the user was capable of completing a circuit around the table while
evading all possible objects. In this regard, the system test was successful. The
user received timely audio feedback that warned him of all obstacles, and the
test was completed without any collision with an obstacle.

On the other hand, the test was useful to identify some of the limitations
of our device that impacted the user experience. On one side, the field of view
of the camera did not cover all areas in front of the user. To prevent hazards
from outside the camera frame, the user had to scan the environment by slightly
moving their head. This task, however, was quite intuitive and posed no problem
during the test, but it was noted that a device with a larger field of view would
be advantageous for this application. A second limitation found was that due to
the generalization of our model (see Fig. 5), the results of semantic segmentation
differ under various environments. This resulted in a handful of times where
obstacles that were not present on the scene were nonetheless notified to the
user. While the user had no problem dealing with them, those diminish the
confidence of users in the system, and thus further improvements in the semantic
segmentation would benefit the user experience.

5 Conclusions

We presented an approach for visually impaired people to gain more mobility
and orientation capacity in an indoor environment. The system makes it possible
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Fig. 5. Semantic segmentation results in our indoor environments.

to provide additional information that it is not easy to obtain with traditional
mobility aids such as the white cane. Combined with semantic contents of the
environment, the system can provide visually impaired people with different
options of their actions (i.e., not only avoidance but also interaction).

In future work, we plan to use the semantic information to improve the
localization further (i.e., to estimate what kind of room the user is currently
located in). We also will test our system with persons with visual impairments to
adapt the system to their special needs. Furthermore, we will robustify semantic
perception in real-world domains [19] and improve the computational efficiency
of the visual positioning system.
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